https://arguably.io/index.php?title=Pi_is_transcendental&feed=atom&action=history Pi is transcendental - Revision history 2024-03-28T22:22:22Z Revision history for this page on the wiki MediaWiki 1.37.1 https://arguably.io/index.php?title=Pi_is_transcendental&diff=630&oldid=prev Beijayl: completed the proof 2022-02-08T22:09:41Z <p>completed the proof</p> <a href="https://arguably.io/index.php?title=Pi_is_transcendental&amp;diff=630&amp;oldid=494">Show changes</a> Beijayl https://arguably.io/index.php?title=Pi_is_transcendental&diff=494&oldid=prev Beijayl at 20:32, 24 January 2022 2022-01-24T20:32:40Z <p></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Older revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 20:32, 24 January 2022</td> </tr><tr><td colspan="2" class="diff-lineno" id="mw-diff-left-l91">Line 91:</td> <td colspan="2" class="diff-lineno">Line 91:</td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;math&gt;\int_0^{\infty}\left(\omega+\beta_i\right)^{\rho}\left[f\left(\omega+\beta_i\right)b^M\right]^{\rho + 1}e^{-\omega}d\omega = b^{M\rho+M}\int_0^{\infty}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\omega^k\beta_i^{\rho-k}\left[f\left(\omega+\beta_i\right)\right]^{\rho + 1}e^{-\omega}d\omega = b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\int_0^{\infty}\omega^k\left[f\left(\omega+\beta_i\right)\right]^{\rho + 1}e^{-\omega}d\omega&lt;/math&gt;</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;math&gt;\int_0^{\infty}\left(\omega+\beta_i\right)^{\rho}\left[f\left(\omega+\beta_i\right)b^M\right]^{\rho + 1}e^{-\omega}d\omega = b^{M\rho+M}\int_0^{\infty}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\omega^k\beta_i^{\rho-k}\left[f\left(\omega+\beta_i\right)\right]^{\rho + 1}e^{-\omega}d\omega = b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\int_0^{\infty}\omega^k\left[f\left(\omega+\beta_i\right)\right]^{\rho + 1}e^{-\omega}d\omega&lt;/math&gt;</div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td></tr> <tr><td class="diff-marker" data-marker="−"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The expression &lt;math&gt;f(\omega+\beta_i)&lt;/math&gt; will again be some kind of &lt;math&gt;M&lt;/math&gt;-th degree polynomial. But because the polynomial is zero for &lt;math&gt;\omega = 0&lt;/math&gt; we know that the last coefficient is also equal to zero.</div></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">:</ins>The expression &lt;math&gt;f(\omega+\beta_i)&lt;/math&gt; will again be some kind of &lt;math&gt;M&lt;/math&gt;-th degree polynomial. But because the polynomial is zero for &lt;math&gt;\omega = 0&lt;/math&gt; we know that the last coefficient is also equal to zero.</div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;math&gt;b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\int_0^{\infty}\omega^k\left[f\left(\omega+\beta_i\right)\right]^{\rho + 1}e^{-\omega}d\omega = b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\int_0^{\infty}\left[b(\omega+\beta_i)^M + \text{ . . . }+b_M\right]^{\rho + 1}\omega^k e^{-\omega}d\omega = b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\int_0^{\infty}\left[l\omega^M + \text{ . . . }+\omega l_{M-1}\right]^{\rho + 1}\omega^k e^{-\omega}d\omega &lt;/math&gt;</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;math&gt;b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\int_0^{\infty}\omega^k\left[f\left(\omega+\beta_i\right)\right]^{\rho + 1}e^{-\omega}d\omega = b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\int_0^{\infty}\left[b(\omega+\beta_i)^M + \text{ . . . }+b_M\right]^{\rho + 1}\omega^k e^{-\omega}d\omega = b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\int_0^{\infty}\left[l\omega^M + \text{ . . . }+\omega l_{M-1}\right]^{\rho + 1}\omega^k e^{-\omega}d\omega &lt;/math&gt;</div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td></tr> <tr><td class="diff-marker" data-marker="−"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>So, raised to the &lt;math&gt;\rho+1&lt;/math&gt;-th power we get a polynomial again, but with the last &lt;math&gt;\rho&lt;/math&gt; coefficients equal to zero.</div></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">:</ins>So, raised to the &lt;math&gt;\rho+1&lt;/math&gt;-th power we get a polynomial again, but with the last &lt;math&gt;\rho&lt;/math&gt; coefficients equal to zero.</div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;math&gt;b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\int_0^{\infty}\left[l\omega^M + \text{ . . . }+\omega l_{M-1}\right]^{\rho + 1}\omega^k e^{-\omega}d\omega = b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\int_0^{\infty}\left(l'\omega^{M\rho+M} + \text{ . . . }+\omega^{\rho+1} l'_{M(\rho+1)-\rho -1}\right)\omega^k e^{-\omega}d\omega &lt;/math&gt;</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;math&gt;b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\int_0^{\infty}\left[l\omega^M + \text{ . . . }+\omega l_{M-1}\right]^{\rho + 1}\omega^k e^{-\omega}d\omega = b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\int_0^{\infty}\left(l'\omega^{M\rho+M} + \text{ . . . }+\omega^{\rho+1} l'_{M(\rho+1)-\rho -1}\right)\omega^k e^{-\omega}d\omega &lt;/math&gt;</div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td></tr> <tr><td class="diff-marker" data-marker="−"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>We can &quot;distribute&quot; the integral into the sum</div></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">:</ins>We can &quot;distribute&quot; the integral into the sum</div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;math&gt;b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\int_0^{\infty}\left(l'\omega^{M\rho+M} + \text{ . . . }+\omega^{\rho+1} l'_{M(\rho+1)-\rho -1}\right)\omega^k e^{-\omega}d\omega  = b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\left(l'\int_0^{\infty}\omega^{M\rho+M}\omega^k e^{-\omega}d\omega + \text{ . . . }+l'_{M(\rho+1)-\rho -1}\int_0^{\infty}\omega^{\rho+1}\omega^k e^{-\omega}d\omega\right)&lt;/math&gt;</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;math&gt;b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\int_0^{\infty}\left(l'\omega^{M\rho+M} + \text{ . . . }+\omega^{\rho+1} l'_{M(\rho+1)-\rho -1}\right)\omega^k e^{-\omega}d\omega  = b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\left(l'\int_0^{\infty}\omega^{M\rho+M}\omega^k e^{-\omega}d\omega + \text{ . . . }+l'_{M(\rho+1)-\rho -1}\int_0^{\infty}\omega^{\rho+1}\omega^k e^{-\omega}d\omega\right)&lt;/math&gt;</div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td></tr> <tr><td class="diff-marker" data-marker="−"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>As above we can now use the fact that &lt;math&gt;\int_0^{\infty}\omega^{\rho}e^{-\omega}d\omega = \rho!&lt;/math&gt; to get rid of the integrals; the expression becomes</div></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">:</ins>As above we can now use the fact that &lt;math&gt;\int_0^{\infty}\omega^{\rho}e^{-\omega}d\omega = \rho!&lt;/math&gt; to get rid of the integrals; the expression becomes</div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;math&gt;b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\left(l'\left(M\rho+M+k\right)! + \text{ . . . }+l'_{M(\rho+1)-\rho -1}\left(\rho+1+k\right)!\right) = b^{M\rho+M}\left(\rho+1\right)!\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\left(l'\frac{\left(M\rho+M+k\right)!}{\left(\rho+1\right)!} + \text{ . . . }+l'_{M(\rho+1)-\rho -1}\frac{\left(\rho+1+k\right)!}{\left(\rho+1\right)!}\right) = \left(\rho+1\right)!\cdot G\left(\beta_i\right)&lt;/math&gt;</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;math&gt;b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\left(l'\left(M\rho+M+k\right)! + \text{ . . . }+l'_{M(\rho+1)-\rho -1}\left(\rho+1+k\right)!\right) = b^{M\rho+M}\left(\rho+1\right)!\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\left(l'\frac{\left(M\rho+M+k\right)!}{\left(\rho+1\right)!} + \text{ . . . }+l'_{M(\rho+1)-\rho -1}\frac{\left(\rho+1+k\right)!}{\left(\rho+1\right)!}\right) = \left(\rho+1\right)!\cdot G\left(\beta_i\right)&lt;/math&gt;</div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td></tr> <tr><td class="diff-marker" data-marker="−"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>where &lt;math&gt;G(\beta_i)&lt;/math&gt; is a polynomial in &lt;math&gt;\beta_i&lt;/math&gt; with integer coefficients.</div></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">:</ins>where &lt;math&gt;G(\beta_i)&lt;/math&gt; is a polynomial in &lt;math&gt;\beta_i&lt;/math&gt; with integer coefficients.</div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;/ref&gt;</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;/ref&gt;</div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>which tells us that the integral is equal to  </div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>which tells us that the integral is equal to  </div></td></tr> </table> Beijayl https://arguably.io/index.php?title=Pi_is_transcendental&diff=493&oldid=prev Beijayl: moved the calculations to the references to make it more readable 2022-01-24T20:28:17Z <p>moved the calculations to the references to make it more readable</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Older revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 20:28, 24 January 2022</td> </tr><tr><td colspan="2" class="diff-lineno" id="mw-diff-left-l37">Line 37:</td> <td colspan="2" class="diff-lineno">Line 37:</td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>and &lt;math&gt;\int_{\beta_i}^{\infty}&lt;/math&gt; is also a line integral obtained by integrating over the line from &lt;math&gt;\beta_i&lt;/math&gt; to &lt;math&gt;\infty&lt;/math&gt; parallel to the</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>and &lt;math&gt;\int_{\beta_i}^{\infty}&lt;/math&gt; is also a line integral obtained by integrating over the line from &lt;math&gt;\beta_i&lt;/math&gt; to &lt;math&gt;\infty&lt;/math&gt; parallel to the</div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>real axis in the complex plane.</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>real axis in the complex plane.</div></td></tr> <tr><td class="diff-marker" data-marker="−"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div> </div></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">&lt;ref&gt;</ins></div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>If &lt;math&gt;\beta_i&lt;/math&gt; is a real number these integrals are just normal Riemann integrals over the real numbers, and it's easy to see that it's valid to split them up in this way.  </div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>If &lt;math&gt;\beta_i&lt;/math&gt; is a real number these integrals are just normal Riemann integrals over the real numbers, and it's easy to see that it's valid to split them up in this way.  </div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>So let &lt;math&gt;\beta_i&lt;/math&gt; be a complex number with imaginary part &lt;math&gt;\text{Im}\left(\beta_i\right)\neq 0&lt;/math&gt;.  </div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>So let &lt;math&gt;\beta_i&lt;/math&gt; be a complex number with imaginary part &lt;math&gt;\text{Im}\left(\beta_i\right)\neq 0&lt;/math&gt;.  </div></td></tr> <tr><td colspan="2" class="diff-lineno" id="mw-diff-left-l55">Line 55:</td> <td colspan="2" class="diff-lineno">Line 55:</td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;\lim_{R\rightarrow\infty}\left(\int_0^{\beta_i} + \int_{\beta_i}^{R'} + \int_{R'}^{R} + \int_{R}^0\right) = 0 \Rightarrow\int_0^{\beta_i} + \int_{\beta_i}^{\infty} +\text{ } 0 + \int_{\infty}^0 = 0\Rightarrow \int_0^{\beta_i} + \int_{\beta_i}^{\infty} = \int_{0}^{\infty}&lt;/math&gt;</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;\lim_{R\rightarrow\infty}\left(\int_0^{\beta_i} + \int_{\beta_i}^{R'} + \int_{R'}^{R} + \int_{R}^0\right) = 0 \Rightarrow\int_0^{\beta_i} + \int_{\beta_i}^{\infty} +\text{ } 0 + \int_{\infty}^0 = 0\Rightarrow \int_0^{\beta_i} + \int_{\beta_i}^{\infty} = \int_{0}^{\infty}&lt;/math&gt;</div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">&lt;/ref></ins></div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Second Part===</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Second Part===</div></td></tr> <tr><td class="diff-marker" data-marker="−"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><del style="font-weight: bold; text-decoration: none;">Now we will show that &lt;math&gt;\int_0^{\infty}=\int_0^{\infty}z^{\rho}\left[f(z)b^M\right]^{\rho + 1}e^{-z}dz&lt;/math&gt; </del>is <del style="font-weight: bold; text-decoration: none;">an integer </del></div></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">The reason to do this </ins>is that<ins style="font-weight: bold; text-decoration: none;">, surprisingly, this turns most of </ins>the <ins style="font-weight: bold; text-decoration: none;">equation into integers</ins>.</div></td></tr> <tr><td class="diff-marker" data-marker="−"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>that <del style="font-weight: bold; text-decoration: none;">is divisible by &lt;math&gt;\rho!&lt;/math&gt; by using </del>the <del style="font-weight: bold; text-decoration: none;">fact that &lt;math&gt;\int_0^{\infty}z^{\rho}e^{-z}dz = \rho!&lt;/math&gt;</del>.</div></td><td colspan="2" class="diff-side-added"></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">First, one can show that &lt;math>\int_0^{\infty}=\int_0^{\infty}z^{\rho}\left[f(z)b^M\right]^{\rho + 1}e^{-z}dz&lt;/math> is an integer </ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">that is divisible by &lt;math>\rho!&lt;/math> by expanding &lt;math>\left[f(z)b^M\right]^{\rho + 1}&lt;/math> </ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">to an integer polynomial and then using the fact that &lt;math>\int_0^{\infty}z^{\sigma}e^{-z}dz = \sigma!&lt;/math> for positive integers &lt;math>\sigma&lt;/math>.</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">&lt;ref></ins></div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;\int_0^{\infty}z^{\rho}\left[f(z)b^M\right]^{\rho + 1}e^{-z}dz = b^{M\left(\rho+1\right)}\int_0^{\infty}\left(bz^M+\text{ . . . }+b_M\right)^{\rho+1}z^{\rho}e^{-z}dz = b^{M\left(\rho+1\right)}\int_0^{\infty}\left(cz^{M\rho+M}+\text{ . . . }+c_{M\rho+M}\right)z^{\rho}e^{-z}dz &lt;/math&gt;</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;\int_0^{\infty}z^{\rho}\left[f(z)b^M\right]^{\rho + 1}e^{-z}dz = b^{M\left(\rho+1\right)}\int_0^{\infty}\left(bz^M+\text{ . . . }+b_M\right)^{\rho+1}z^{\rho}e^{-z}dz = b^{M\left(\rho+1\right)}\int_0^{\infty}\left(cz^{M\rho+M}+\text{ . . . }+c_{M\rho+M}\right)z^{\rho}e^{-z}dz &lt;/math&gt;</div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:::&lt;math&gt;= b^{M\left(\rho+1\right)}\left(c\int_0^{\infty}z^{M\rho+M+\rho}e^{-z}dz+\text{ . . . }+c_{M\rho+M}\int_0^{\infty}z^{\rho}e^{-z}dz\right) = b^{M\left(\rho+1\right)}\left(c\left(M\rho+M+\rho\right)!+\text{ . . . }+c_{M\rho+M}\rho!\right)&lt;/math&gt;</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:::&lt;math&gt;= b^{M\left(\rho+1\right)}\left(c\int_0^{\infty}z^{M\rho+M+\rho}e^{-z}dz+\text{ . . . }+c_{M\rho+M}\int_0^{\infty}z^{\rho}e^{-z}dz\right) = b^{M\left(\rho+1\right)}\left(c\left(M\rho+M+\rho\right)!+\text{ . . . }+c_{M\rho+M}\rho!\right)&lt;/math&gt;</div></td></tr> <tr><td colspan="2" class="diff-lineno" id="mw-diff-left-l65">Line 65:</td> <td colspan="2" class="diff-lineno">Line 69:</td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>where the &lt;math&gt;c_i&lt;/math&gt; are integers; if &lt;math&gt;f&lt;/math&gt; is a polynomial with integer coefficients so is &lt;math&gt;f^{\rho+1}&lt;/math&gt;.</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>where the &lt;math&gt;c_i&lt;/math&gt; are integers; if &lt;math&gt;f&lt;/math&gt; is a polynomial with integer coefficients so is &lt;math&gt;f^{\rho+1}&lt;/math&gt;.</div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The fractions are also integers because &lt;math&gt;\frac{\left(\rho+k\right)!}{\rho!}=\frac{(\rho+k)(\rho+k-1)\text{ . . . }\cdot2\cdot 1}{\rho(\rho-1)\text{ . . . }\cdot2\cdot 1}=(\rho+k)\text{ . . . }(\rho+2)(\rho+1)&lt;/math&gt;.</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The fractions are also integers because &lt;math&gt;\frac{\left(\rho+k\right)!}{\rho!}=\frac{(\rho+k)(\rho+k-1)\text{ . . . }\cdot2\cdot 1}{\rho(\rho-1)\text{ . . . }\cdot2\cdot 1}=(\rho+k)\text{ . . . }(\rho+2)(\rho+1)&lt;/math&gt;.</div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">&lt;/ref></ins></div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td></tr> <tr><td class="diff-marker" data-marker="−"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><del style="font-weight: bold; text-decoration: none;">So </del>the <del style="font-weight: bold; text-decoration: none;">whole expression is an integer that is divisible by </del>&lt;math&gt;\rho!&lt;/math&gt;.</div></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">More specifically, if divided by &lt;math&gt;(\rho+1)&lt;/math&gt;, one get's </ins>the <ins style="font-weight: bold; text-decoration: none;">remainder </ins>&lt;math&gt; <ins style="font-weight: bold; text-decoration: none;">b^{\left(M\rho+M\right)}\cdot b_M^{\left(\rho+1\right)}\cdot</ins>\rho! &lt;/math&gt;.</div></td></tr> <tr><td class="diff-marker" data-marker="−"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Note that in the parentheses every term is divisible by &lt;math&gt;(\rho+1)&lt;/math&gt; except the last one &lt;math&gt;c_{M\rho+M}&lt;/math&gt;.</div></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">&lt;ref&gt;</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Note that in the parentheses <ins style="font-weight: bold; text-decoration: none;">above </ins>every term is divisible by &lt;math&gt;(\rho+1)&lt;/math&gt; except the last one &lt;math&gt;c_{M\rho+M}&lt;/math&gt;.</div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Hence, modulo &lt;math&gt;(\rho+1)&lt;/math&gt; we have the congruence &lt;math&gt;\int_0^{\infty}\equiv b^{M\rho+M}\rho! c_{M\rho+M}&lt;/math&gt;,  </div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Hence, modulo &lt;math&gt;(\rho+1)&lt;/math&gt; we have the congruence &lt;math&gt;\int_0^{\infty}\equiv b^{M\rho+M}\rho! c_{M\rho+M}&lt;/math&gt;,  </div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>and since  </div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>and since  </div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;math&gt;\left(bz^M+\text{ . . . }+b_M\right)^{\rho+1}=\left(cz^{M\rho+M}+\text{ . . . }+c_{M\rho+M}\right)\Rightarrow c_{M\rho+M}=b_M^{\rho+1}\Rightarrow\int_0^{\infty}\equiv b^{M\rho+M}\rho! b_M^{\rho+1}\text{    (mod } \rho+1)&lt;/math&gt;.</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;math&gt;\left(bz^M+\text{ . . . }+b_M\right)^{\rho+1}=\left(cz^{M\rho+M}+\text{ . . . }+c_{M\rho+M}\right)\Rightarrow c_{M\rho+M}=b_M^{\rho+1}\Rightarrow\int_0^{\infty}\equiv b^{M\rho+M}\rho! b_M^{\rho+1}\text{    (mod } \rho+1)&lt;/math&gt;.</div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">&lt;/ref></ins></div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Third Part===</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Third Part===</div></td></tr> <tr><td class="diff-marker" data-marker="−"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><del style="font-weight: bold; text-decoration: none;">We will now show something similar </del>for the terms &lt;math&gt;e^{\beta_i}\int_{\beta_i}^{\infty}&lt;/math&gt;.</div></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">Something slightly weaker can be shown </ins>for the terms &lt;math&gt;e^{\beta_i}\int_{\beta_i}^{\infty}<ins style="font-weight: bold; text-decoration: none;">=e^{\beta_i}\int_{\beta_i}^{\infty}z^{\rho}\left[f(z)b^M\right]^{\rho + 1}e^{-z}dz</ins>&lt;/math&gt;.</div></td></tr> <tr><td class="diff-marker" data-marker="−"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Using the substitution &lt;math&gt;\omega = z+\beta_i&lt;/math&gt; we can set the bounds of integration to &lt;math&gt;0&lt;/math&gt; and &lt;math&gt;\infty&lt;/math&gt;<del style="font-weight: bold; text-decoration: none;">:</del></div></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Using the substitution &lt;math&gt;\omega = z+\beta_i&lt;/math&gt; we can set the bounds of integration to &lt;math&gt;0&lt;/math&gt; and &lt;math&gt;\infty&lt;/math&gt;<ins style="font-weight: bold; text-decoration: none;">,</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">&lt;ref&gt;</ins></div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;e^{\beta_i}\int_{\beta_i}^{\infty}z^{\rho}\left[f(z)b^M\right]^{\rho + 1}e^{-z}dz = e^{\beta_i}\int_0^{\infty}\left(\omega+\beta_i\right)^{\rho}\left[f\left(\omega+\beta_i\right)b^M\right]^{\rho + 1}e^{-\omega-\beta_i}d\omega = \int_0^{\infty}\left(\omega+\beta_i\right)^{\rho}\left[f\left(\omega+\beta_i\right)b^M\right]^{\rho + 1}e^{-\omega}d\omega&lt;/math&gt;</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;e^{\beta_i}\int_{\beta_i}^{\infty}z^{\rho}\left[f(z)b^M\right]^{\rho + 1}e^{-z}dz = e^{\beta_i}\int_0^{\infty}\left(\omega+\beta_i\right)^{\rho}\left[f\left(\omega+\beta_i\right)b^M\right]^{\rho + 1}e^{-\omega-\beta_i}d\omega = \int_0^{\infty}\left(\omega+\beta_i\right)^{\rho}\left[f\left(\omega+\beta_i\right)b^M\right]^{\rho + 1}e^{-\omega}d\omega&lt;/math&gt;</div></td></tr> <tr><td class="diff-marker" data-marker="−"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><del style="font-weight: bold; text-decoration: none;">Then </del>we can expand the first factor using the binomial theorem  </div></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">&lt;/ref&gt;</ins></div></td></tr> <tr><td class="diff-marker" data-marker="−"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><del style="font-weight: bold; text-decoration: none;">:</del>&lt;math&gt;\int_0^{\infty}\left(\omega+\beta_i\right)^{\rho}\left[f\left(\omega+\beta_i\right)b^M\right]^{\rho + 1}e^{-\omega}d\omega = b^{M\rho+M}\int_0^{\infty}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\omega^k\beta_i^{\rho-k}\left[f\left(\omega+\beta_i\right)\right]^{\rho + 1}e^{-\omega}d\omega = b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\int_0^{\infty}\omega^k\left[f\left(\omega+\beta_i\right)\right]^{\rho + 1}e^{-\omega}d\omega&lt;/math&gt;</div></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">and then perform some similar algebraic manipulations so that </ins>we <ins style="font-weight: bold; text-decoration: none;">can use &lt;math&gt;\int_0^{\infty}z^{\sigma}e^{-z}dz = \sigma!&lt;/math&gt; again,</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">&lt;ref&gt;</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">We </ins>can expand the first factor using the binomial theorem  </div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> </div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>&lt;math&gt;\int_0^{\infty}\left(\omega+\beta_i\right)^{\rho}\left[f\left(\omega+\beta_i\right)b^M\right]^{\rho + 1}e^{-\omega}d\omega = b^{M\rho+M}\int_0^{\infty}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\omega^k\beta_i^{\rho-k}\left[f\left(\omega+\beta_i\right)\right]^{\rho + 1}e^{-\omega}d\omega = b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\int_0^{\infty}\omega^k\left[f\left(\omega+\beta_i\right)\right]^{\rho + 1}e^{-\omega}d\omega&lt;/math&gt;</div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> </div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The expression &lt;math&gt;f(\omega+\beta_i)&lt;/math&gt; will again be some kind of &lt;math&gt;M&lt;/math&gt;-th degree polynomial. But because the polynomial is zero for &lt;math&gt;\omega = 0&lt;/math&gt; we know that the last coefficient is also equal to zero.</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The expression &lt;math&gt;f(\omega+\beta_i)&lt;/math&gt; will again be some kind of &lt;math&gt;M&lt;/math&gt;-th degree polynomial. But because the polynomial is zero for &lt;math&gt;\omega = 0&lt;/math&gt; we know that the last coefficient is also equal to zero.</div></td></tr> <tr><td class="diff-marker" data-marker="−"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><del style="font-weight: bold; text-decoration: none;">:</del>&lt;math&gt;b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\int_0^{\infty}\omega^k\left[f\left(\omega+\beta_i\right)\right]^{\rho + 1}e^{-\omega}d\omega = b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\int_0^{\infty}\left[b(\omega+\beta_i)^M + \text{ . . . }+b_M\right]^{\rho + 1}\omega^k e^{-\omega}d\omega = b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\int_0^{\infty}\left[l\omega^M + \text{ . . . }+\omega l_{M-1}\right]^{\rho + 1}\omega^k e^{-\omega}d\omega &lt;/math&gt;</div></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> </div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>&lt;math&gt;b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\int_0^{\infty}\omega^k\left[f\left(\omega+\beta_i\right)\right]^{\rho + 1}e^{-\omega}d\omega = b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\int_0^{\infty}\left[b(\omega+\beta_i)^M + \text{ . . . }+b_M\right]^{\rho + 1}\omega^k e^{-\omega}d\omega = b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\int_0^{\infty}\left[l\omega^M + \text{ . . . }+\omega l_{M-1}\right]^{\rho + 1}\omega^k e^{-\omega}d\omega &lt;/math&gt;</div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> </div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>So, raised to the &lt;math&gt;\rho+1&lt;/math&gt;-th power we get a polynomial again, but with the last &lt;math&gt;\rho&lt;/math&gt; coefficients equal to zero.</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>So, raised to the &lt;math&gt;\rho+1&lt;/math&gt;-th power we get a polynomial again, but with the last &lt;math&gt;\rho&lt;/math&gt; coefficients equal to zero.</div></td></tr> <tr><td class="diff-marker" data-marker="−"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><del style="font-weight: bold; text-decoration: none;">:</del>&lt;math&gt;b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\int_0^{\infty}\left[l\omega^M + \text{ . . . }+\omega l_{M-1}\right]^{\rho + 1}\omega^k e^{-\omega}d\omega = b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\int_0^{\infty}\left(l'\omega^{M\rho+M} + \text{ . . . }+\omega^{\rho+1} l'_{M(\rho+1)-\rho -1}\right)\omega^k e^{-\omega}d\omega &lt;/math&gt;</div></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> </div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>&lt;math&gt;b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\int_0^{\infty}\left[l\omega^M + \text{ . . . }+\omega l_{M-1}\right]^{\rho + 1}\omega^k e^{-\omega}d\omega = b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\int_0^{\infty}\left(l'\omega^{M\rho+M} + \text{ . . . }+\omega^{\rho+1} l'_{M(\rho+1)-\rho -1}\right)\omega^k e^{-\omega}d\omega &lt;/math&gt;</div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> </div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>We can &quot;distribute&quot; the integral into the sum</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>We can &quot;distribute&quot; the integral into the sum</div></td></tr> <tr><td class="diff-marker" data-marker="−"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><del style="font-weight: bold; text-decoration: none;">:</del>&lt;math&gt;b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\int_0^{\infty}\left(l'\omega^{M\rho+M} + \text{ . . . }+\omega^{\rho+1} l'_{M(\rho+1)-\rho -1}\right)\omega^k e^{-\omega}d\omega  = b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\left(l'\int_0^{\infty}\omega^{M\rho+M}\omega^k e^{-\omega}d\omega + \text{ . . . }+l'_{M(\rho+1)-\rho -1}\int_0^{\infty}\omega^{\rho+1}\omega^k e^{-\omega}d\omega\right)&lt;/math&gt;</div></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> </div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>&lt;math&gt;b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\int_0^{\infty}\left(l'\omega^{M\rho+M} + \text{ . . . }+\omega^{\rho+1} l'_{M(\rho+1)-\rho -1}\right)\omega^k e^{-\omega}d\omega  = b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\left(l'\int_0^{\infty}\omega^{M\rho+M}\omega^k e^{-\omega}d\omega + \text{ . . . }+l'_{M(\rho+1)-\rho -1}\int_0^{\infty}\omega^{\rho+1}\omega^k e^{-\omega}d\omega\right)&lt;/math&gt;</div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> </div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>As above we can now use the fact that &lt;math&gt;\int_0^{\infty}\omega^{\rho}e^{-\omega}d\omega = \rho!&lt;/math&gt; to get rid of the integrals; the expression becomes</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>As above we can now use the fact that &lt;math&gt;\int_0^{\infty}\omega^{\rho}e^{-\omega}d\omega = \rho!&lt;/math&gt; to get rid of the integrals; the expression becomes</div></td></tr> <tr><td class="diff-marker" data-marker="−"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><del style="font-weight: bold; text-decoration: none;">:</del>&lt;math&gt;b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\left(l'\left(M\rho+M+k\right)! + \text{ . . . }+l'_{M(\rho+1)-\rho -1}\left(\rho+1+k\right)!\right) = b^{M\rho+M}\left(\rho+1\right)!\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\left(l'\frac{\left(M\rho+M+k\right)!}{\left(\rho+1\right)!} + \text{ . . . }+l'_{M(\rho+1)-\rho -1}\frac{\left(\rho+1+k\right)!}{\left(\rho+1\right)!}\right) = \left(\rho+1\right)!\cdot G\left(\beta_i\right)&lt;/math&gt;</div></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> </div></td></tr> <tr><td class="diff-marker" data-marker="−"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>where &lt;math&gt;G(\beta_i)&lt;/math&gt; is a polynomial in &lt;math&gt;\beta_i&lt;/math&gt; with integer coefficients</div></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>&lt;math&gt;b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\left(l'\left(M\rho+M+k\right)! + \text{ . . . }+l'_{M(\rho+1)-\rho -1}\left(\rho+1+k\right)!\right) = b^{M\rho+M}\left(\rho+1\right)!\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\left(l'\frac{\left(M\rho+M+k\right)!}{\left(\rho+1\right)!} + \text{ . . . }+l'_{M(\rho+1)-\rho -1}\frac{\left(\rho+1+k\right)!}{\left(\rho+1\right)!}\right) = \left(\rho+1\right)!\cdot G\left(\beta_i\right)&lt;/math&gt;</div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> </div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">where &lt;math&gt;G(\beta_i)&lt;/math&gt; is a polynomial in &lt;math&gt;\beta_i&lt;/math&gt; with integer coefficients.</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">&lt;/ref&gt;</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">which tells us that the integral is equal to </ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">&lt;math&gt;\left(\rho+1\right)!\cdot G\left(\beta_i\right)&lt;/math&gt;,  </ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>where &lt;math&gt;G(\beta_i)&lt;/math&gt; is a polynomial in &lt;math&gt;\beta_i&lt;/math&gt; with integer coefficients<ins style="font-weight: bold; text-decoration: none;">.</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> </div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">===Fourth Part===</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">...</ins></div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Claim</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Claim</div></td></tr> </table> Beijayl https://arguably.io/index.php?title=Pi_is_transcendental&diff=400&oldid=prev Beijayl at 02:12, 23 January 2022 2022-01-23T02:12:38Z <p></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Older revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 02:12, 23 January 2022</td> </tr><tr><td colspan="2" class="diff-lineno" id="mw-diff-left-l4">Line 4:</td> <td colspan="2" class="diff-lineno">Line 4:</td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Proof==</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Proof==</div></td></tr> <tr><td class="diff-marker" data-marker="−"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The proof <del style="font-weight: bold; text-decoration: none;">sketched out </del>here is not the original proof by Lindemann but a later proof by David Hilbert which is more accessible.</div></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The proof <ins style="font-weight: bold; text-decoration: none;">shown </ins>here is not the original proof by Lindemann but a later proof by David Hilbert which is <ins style="font-weight: bold; text-decoration: none;">a bit </ins>more accessible.</div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Suppose &lt;math&gt;\pi&lt;/math&gt; is algebraic.  </div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Suppose &lt;math&gt;\pi&lt;/math&gt; is algebraic.  </div></td></tr> <tr><td colspan="2" class="diff-lineno" id="mw-diff-left-l26">Line 26:</td> <td colspan="2" class="diff-lineno">Line 26:</td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===First Part===</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===First Part===</div></td></tr> <tr><td class="diff-marker" data-marker="−"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><del style="font-weight: bold; text-decoration: none;">Now </del>we will multiply our equation with the integral &lt;math&gt;\int_0^{\infty}z^{\rho}\left[f(z)b^M\right]^{\rho + 1}e^{-z}dz&lt;/math&gt;,  </div></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">First </ins>we will multiply our equation with the integral &lt;math&gt;\int_0^{\infty}z^{\rho}\left[f(z)b^M\right]^{\rho + 1}e^{-z}dz&lt;/math&gt;,  </div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>where &lt;math&gt;\rho&lt;/math&gt; is some positive integer.</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>where &lt;math&gt;\rho&lt;/math&gt; is some positive integer.</div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>We will write &lt;math&gt;\int_0^{\infty}&lt;/math&gt; as a shorthand.</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>We will write &lt;math&gt;\int_0^{\infty}&lt;/math&gt; as a shorthand.</div></td></tr> <tr><td colspan="2" class="diff-lineno" id="mw-diff-left-l73">Line 73:</td> <td colspan="2" class="diff-lineno">Line 73:</td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Third Part===</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Third Part===</div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">We will now show something similar for the terms &lt;math>e^{\beta_i}\int_{\beta_i}^{\infty}&lt;/math>.</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">Using the substitution &lt;math>\omega = z+\beta_i&lt;/math> we can set the bounds of integration to &lt;math>0&lt;/math> and &lt;math>\infty&lt;/math>:</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">:&lt;math>e^{\beta_i}\int_{\beta_i}^{\infty}z^{\rho}\left[f(z)b^M\right]^{\rho + 1}e^{-z}dz = e^{\beta_i}\int_0^{\infty}\left(\omega+\beta_i\right)^{\rho}\left[f\left(\omega+\beta_i\right)b^M\right]^{\rho + 1}e^{-\omega-\beta_i}d\omega = \int_0^{\infty}\left(\omega+\beta_i\right)^{\rho}\left[f\left(\omega+\beta_i\right)b^M\right]^{\rho + 1}e^{-\omega}d\omega&lt;/math></ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">Then we can expand the first factor using the binomial theorem </ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">:&lt;math>\int_0^{\infty}\left(\omega+\beta_i\right)^{\rho}\left[f\left(\omega+\beta_i\right)b^M\right]^{\rho + 1}e^{-\omega}d\omega = b^{M\rho+M}\int_0^{\infty}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\omega^k\beta_i^{\rho-k}\left[f\left(\omega+\beta_i\right)\right]^{\rho + 1}e^{-\omega}d\omega = b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\int_0^{\infty}\omega^k\left[f\left(\omega+\beta_i\right)\right]^{\rho + 1}e^{-\omega}d\omega&lt;/math></ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">The expression &lt;math>f(\omega+\beta_i)&lt;/math> will again be some kind of &lt;math>M&lt;/math>-th degree polynomial. But because the polynomial is zero for &lt;math>\omega = 0&lt;/math> we know that the last coefficient is also equal to zero.</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">:&lt;math>b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\int_0^{\infty}\omega^k\left[f\left(\omega+\beta_i\right)\right]^{\rho + 1}e^{-\omega}d\omega = b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\int_0^{\infty}\left[b(\omega+\beta_i)^M + \text{ . . . }+b_M\right]^{\rho + 1}\omega^k e^{-\omega}d\omega = b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\int_0^{\infty}\left[l\omega^M + \text{ . . . }+\omega l_{M-1}\right]^{\rho + 1}\omega^k e^{-\omega}d\omega &lt;/math></ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">So, raised to the &lt;math>\rho+1&lt;/math>-th power we get a polynomial again, but with the last &lt;math>\rho&lt;/math> coefficients equal to zero.</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">:&lt;math>b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\int_0^{\infty}\left[l\omega^M + \text{ . . . }+\omega l_{M-1}\right]^{\rho + 1}\omega^k e^{-\omega}d\omega = b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\int_0^{\infty}\left(l'\omega^{M\rho+M} + \text{ . . . }+\omega^{\rho+1} l'_{M(\rho+1)-\rho -1}\right)\omega^k e^{-\omega}d\omega &lt;/math></ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">We can "distribute" the integral into the sum</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">:&lt;math>b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\int_0^{\infty}\left(l'\omega^{M\rho+M} + \text{ . . . }+\omega^{\rho+1} l'_{M(\rho+1)-\rho -1}\right)\omega^k e^{-\omega}d\omega  = b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\left(l'\int_0^{\infty}\omega^{M\rho+M}\omega^k e^{-\omega}d\omega + \text{ . . . }+l'_{M(\rho+1)-\rho -1}\int_0^{\infty}\omega^{\rho+1}\omega^k e^{-\omega}d\omega\right)&lt;/math></ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">As above we can now use the fact that &lt;math>\int_0^{\infty}\omega^{\rho}e^{-\omega}d\omega = \rho!&lt;/math> to get rid of the integrals; the expression becomes</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">:&lt;math>b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\left(l'\left(M\rho+M+k\right)! + \text{ . . . }+l'_{M(\rho+1)-\rho -1}\left(\rho+1+k\right)!\right) = b^{M\rho+M}\left(\rho+1\right)!\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\left(l'\frac{\left(M\rho+M+k\right)!}{\left(\rho+1\right)!} + \text{ . . . }+l'_{M(\rho+1)-\rho -1}\frac{\left(\rho+1+k\right)!}{\left(\rho+1\right)!}\right) = \left(\rho+1\right)!\cdot G\left(\beta_i\right)&lt;/math></ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">where &lt;math>G(\beta_i)&lt;/math> is a polynomial in &lt;math>\beta_i&lt;/math> with integer coefficients</ins></div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Claim</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Claim</div></td></tr> </table> Beijayl https://arguably.io/index.php?title=Pi_is_transcendental&diff=338&oldid=prev Beijayl at 23:21, 22 January 2022 2022-01-22T23:21:33Z <p></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Older revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 23:21, 22 January 2022</td> </tr><tr><td colspan="2" class="diff-lineno" id="mw-diff-left-l70">Line 70:</td> <td colspan="2" class="diff-lineno">Line 70:</td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Hence, modulo &lt;math&gt;(\rho+1)&lt;/math&gt; we have the congruence &lt;math&gt;\int_0^{\infty}\equiv b^{M\rho+M}\rho! c_{M\rho+M}&lt;/math&gt;,  </div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Hence, modulo &lt;math&gt;(\rho+1)&lt;/math&gt; we have the congruence &lt;math&gt;\int_0^{\infty}\equiv b^{M\rho+M}\rho! c_{M\rho+M}&lt;/math&gt;,  </div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>and since  </div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>and since  </div></td></tr> <tr><td class="diff-marker" data-marker="−"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>&lt;math&gt;\left(bz^M+\text{ . . . }+b_M\right)^{\rho+1}=\left(cz^{M\rho+M}+\text{ . . . }+c_{M\rho+M}\right)\Rightarrow c_{M\rho+M}=b_M^{\rho+1}\Rightarrow\int_0^{\infty}\equiv b^{M\rho+M}\rho! b_M^{\rho+1}\text{    (mod } \rho+1)&lt;/math&gt;</div></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>&lt;math&gt;\left(bz^M+\text{ . . . }+b_M\right)^{\rho+1}=\left(cz^{M\rho+M}+\text{ . . . }+c_{M\rho+M}\right)\Rightarrow c_{M\rho+M}=b_M^{\rho+1}\Rightarrow\int_0^{\infty}\equiv b^{M\rho+M}\rho! b_M^{\rho+1}\text{    (mod } \rho+1)&lt;/math&gt;<ins style="font-weight: bold; text-decoration: none;">.</ins></div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Third Part===</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Third Part===</div></td></tr> </table> Beijayl https://arguably.io/index.php?title=Pi_is_transcendental&diff=337&oldid=prev Beijayl at 23:20, 22 January 2022 2022-01-22T23:20:28Z <p></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Older revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 23:20, 22 January 2022</td> </tr><tr><td colspan="2" class="diff-lineno" id="mw-diff-left-l68">Line 68:</td> <td colspan="2" class="diff-lineno">Line 68:</td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>So the whole expression is an integer that is divisible by &lt;math&gt;\rho!&lt;/math&gt;.</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>So the whole expression is an integer that is divisible by &lt;math&gt;\rho!&lt;/math&gt;.</div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Note that in the parentheses every term is divisible by &lt;math&gt;(\rho+1)&lt;/math&gt; except the last one &lt;math&gt;c_{M\rho+M}&lt;/math&gt;.</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Note that in the parentheses every term is divisible by &lt;math&gt;(\rho+1)&lt;/math&gt; except the last one &lt;math&gt;c_{M\rho+M}&lt;/math&gt;.</div></td></tr> <tr><td class="diff-marker" data-marker="−"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Hence, modulo &lt;math&gt;(\rho+1)&lt;/math&gt; we have the congruence &lt;math&gt;\int_0^{\infty}\equiv b^{M\rho+M}\rho! b_M^{\rho+1}&lt;/math&gt;<del style="font-weight: bold; text-decoration: none;">.</del></div></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Hence, modulo &lt;math&gt;(\rho+1)&lt;/math&gt; we have the congruence &lt;math&gt;\int_0^{\infty}\equiv b^{M\rho+M}\rho! <ins style="font-weight: bold; text-decoration: none;">c_{M\rho+M}&lt;/math&gt;, </ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">and since </ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">&lt;math&gt;\left(bz^M+\text{ . . . }+</ins>b_M<ins style="font-weight: bold; text-decoration: none;">\right)</ins>^{\rho+1}<ins style="font-weight: bold; text-decoration: none;">=\left(cz^{M\rho+M}+\text{ . . . }+c_{M\rho+M}\right)\Rightarrow c_{M\rho+M}=b_M^{\rho+1}\Rightarrow\int_0^{\infty}\equiv b^{M\rho+M}\rho! b_M^{\rho+1}\text{    (mod } \rho+1)</ins>&lt;/math&gt;</div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Third Part===</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Third Part===</div></td></tr> </table> Beijayl https://arguably.io/index.php?title=Pi_is_transcendental&diff=333&oldid=prev Beijayl at 23:11, 22 January 2022 2022-01-22T23:11:18Z <p></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Older revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 23:11, 22 January 2022</td> </tr><tr><td colspan="2" class="diff-lineno" id="mw-diff-left-l57">Line 57:</td> <td colspan="2" class="diff-lineno">Line 57:</td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Second Part===</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Second Part===</div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">Now we will show that &lt;math>\int_0^{\infty}=\int_0^{\infty}z^{\rho}\left[f(z)b^M\right]^{\rho + 1}e^{-z}dz&lt;/math> is an integer </ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">that is divisible by &lt;math>\rho!&lt;/math> by using the fact that &lt;math>\int_0^{\infty}z^{\rho}e^{-z}dz = \rho!&lt;/math>.</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;"></ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">:&lt;math>\int_0^{\infty}z^{\rho}\left[f(z)b^M\right]^{\rho + 1}e^{-z}dz = b^{M\left(\rho+1\right)}\int_0^{\infty}\left(bz^M+\text{ . . . }+b_M\right)^{\rho+1}z^{\rho}e^{-z}dz = b^{M\left(\rho+1\right)}\int_0^{\infty}\left(cz^{M\rho+M}+\text{ . . . }+c_{M\rho+M}\right)z^{\rho}e^{-z}dz &lt;/math></ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">:::&lt;math>= b^{M\left(\rho+1\right)}\left(c\int_0^{\infty}z^{M\rho+M+\rho}e^{-z}dz+\text{ . . . }+c_{M\rho+M}\int_0^{\infty}z^{\rho}e^{-z}dz\right) = b^{M\left(\rho+1\right)}\left(c\left(M\rho+M+\rho\right)!+\text{ . . . }+c_{M\rho+M}\rho!\right)&lt;/math></ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">:::&lt;math>=b^{M\rho+M}\rho!\left(c\frac{\left(M\rho+M+\rho\right)!}{\rho!}+\text{ . . . }+c_{M\rho+M}\right)&lt;/math></ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">where the &lt;math>c_i&lt;/math> are integers; if &lt;math>f&lt;/math> is a polynomial with integer coefficients so is &lt;math>f^{\rho+1}&lt;/math>.</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">The fractions are also integers because &lt;math>\frac{\left(\rho+k\right)!}{\rho!}=\frac{(\rho+k)(\rho+k-1)\text{ . . . }\cdot2\cdot 1}{\rho(\rho-1)\text{ . . . }\cdot2\cdot 1}=(\rho+k)\text{ . . . }(\rho+2)(\rho+1)&lt;/math>.</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;"></ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">So the whole expression is an integer that is divisible by &lt;math>\rho!&lt;/math>.</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">Note that in the parentheses every term is divisible by &lt;math>(\rho+1)&lt;/math> except the last one &lt;math>c_{M\rho+M}&lt;/math>.</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">Hence, modulo &lt;math>(\rho+1)&lt;/math> we have the congruence &lt;math>\int_0^{\infty}\equiv b^{M\rho+M}\rho! b_M^{\rho+1}&lt;/math>.</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;"></ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">===Third Part===</ins></div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Claim</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Claim</div></td></tr> </table> Beijayl https://arguably.io/index.php?title=Pi_is_transcendental&diff=320&oldid=prev Beijayl at 22:07, 22 January 2022 2022-01-22T22:07:21Z <p></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Older revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 22:07, 22 January 2022</td> </tr><tr><td colspan="2" class="diff-lineno" id="mw-diff-left-l1">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Pi is transcendental''' is a famous claim regarding the nature of the number &lt;math&gt;\pi&lt;/math&gt;.  </div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Pi is transcendental''' is a famous claim regarding the nature of the number &lt;math&gt;\pi&lt;/math&gt;.  </div></td></tr> <tr><td class="diff-marker" data-marker="−"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>It was first proven by Lindemann in 1882, buildung on methods developed by Hermite, who was able to prove that the number &lt;math&gt;e&lt;/math&gt; is transcendental roughly 10 years earlier in 1873.</div></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>It was first proven by <ins style="font-weight: bold; text-decoration: none;">Ferdinand von </ins>Lindemann in 1882, buildung on methods developed by <ins style="font-weight: bold; text-decoration: none;">Charles </ins>Hermite, who was able to prove that the number &lt;math&gt;e&lt;/math&gt; is transcendental roughly 10 years earlier in 1873.</div></td></tr> <tr><td class="diff-marker" data-marker="−"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>With the help of Weierstrass their findings could be generalized to the Lindemann-Weierstrass theorem in 1885.</div></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>With the help of <ins style="font-weight: bold; text-decoration: none;">Karl </ins>Weierstrass their findings could be generalized to the Lindemann-Weierstrass theorem in 1885.</div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Proof==</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Proof==</div></td></tr> <tr><td colspan="2" class="diff-lineno" id="mw-diff-left-l7">Line 7:</td> <td colspan="2" class="diff-lineno">Line 7:</td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Suppose &lt;math&gt;\pi&lt;/math&gt; is algebraic.  </div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Suppose &lt;math&gt;\pi&lt;/math&gt; is algebraic.  </div></td></tr> <tr><td class="diff-marker" data-marker="−"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><del style="font-weight: bold; text-decoration: none;">Then </del>&lt;math&gt;\alpha_{1}<del style="font-weight: bold; text-decoration: none;">:</del>=i\pi&lt;/math&gt; is also algebraic, so it is the root of an &lt;math&gt;n&lt;/math&gt;-th degree polynomial with integer coefficients.  </div></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">Set </ins>&lt;math&gt;\alpha_{1}=i\pi<ins style="font-weight: bold; text-decoration: none;">&lt;/math&gt; </ins></div></td></tr> <tr><td class="diff-marker" data-marker="−"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Let &lt;math&gt;\alpha_{2}\text{, . . . , }\alpha_{n}&lt;/math&gt; be the other roots of this polynomial.</div></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">where &lt;math&gt;i&lt;/math&gt; is the imaginary unit &lt;math&gt;\left(i^2=-1\right)&lt;/math&gt;.</ins></div></td></tr> <tr><td class="diff-marker" data-marker="−"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Since &lt;math&gt;1+e^{i\pi}=0&lt;/math&gt; we have  </div></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">Then &lt;math&gt;\alpha_{1}</ins>&lt;/math&gt; is also algebraic, so it is the root of an  </div></td></tr> <tr><td class="diff-marker" data-marker="−"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>&lt;math&gt;(1+e^{\alpha_{1}})(1+e^{\alpha_{2}})\text{ . . . }(1+e^{\alpha_{n}})=1+e^{\beta_{1}}+e^{\beta_{2}}+\text{ . . . }+e^{\beta_{N}}=0&lt;/math&gt;  </div></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>&lt;math&gt;n&lt;/math&gt;-th degree polynomial with integer coefficients.  </div></td></tr> <tr><td class="diff-marker" data-marker="−"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><del style="font-weight: bold; text-decoration: none;">with </del>some <del style="font-weight: bold; text-decoration: none;">algebraic </del>&lt;math&gt;\beta_{1}\text{, . . . , }\beta_{N}&lt;/math&gt;.  </div></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Let &lt;math&gt;\alpha_{2}\text{, . . . , }\alpha_{n}&lt;/math&gt; be the other roots of this polynomial.  </div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> </div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Since &lt;math&gt;1+e^{i\pi}=0&lt;/math&gt; <ins style="font-weight: bold; text-decoration: none;">(Euler's identity) </ins>we have  </div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>&lt;math&gt;(1+e^{\alpha_{1}})(1+e^{\alpha_{2}})\text{ . . . }(1+e^{\alpha_{n}})=1+e^{\beta_{1}}+e^{\beta_{2}}+\text{ . . . }+e^{\beta_{N}}=0&lt;/math&gt; <ins style="font-weight: bold; text-decoration: none;"> </ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">for </ins>some &lt;math&gt;\beta_{1}\text{, . . . , }\beta_{N}&lt;/math&gt;<ins style="font-weight: bold; text-decoration: none;">.</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">These &lt;math&gt;\beta_i&lt;/math&gt; are also algebraic, since they are the sums of other algebraic numbers (the &lt;math&gt;\alpha_i&lt;/math&gt;)</ins>.</div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Disregarding the &lt;math&gt;\beta_{i}&lt;/math&gt; that are equal to &lt;math&gt;0&lt;/math&gt;, we end up with  </div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Disregarding the &lt;math&gt;\beta_{i}&lt;/math&gt; that are equal to &lt;math&gt;0&lt;/math&gt;, we end up with  </div></td></tr> <tr><td class="diff-marker" data-marker="−"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>&lt;math&gt;a+e^{\beta_{1}}+e^{\beta_{2}}+\text{ . . . }+e^{\beta_{M}}=0&lt;/math&gt; for some positive integer &lt;math&gt;a&lt;/math&gt;.</div></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>&lt;math&gt;a+e^{\beta_{1}}+e^{\beta_{2}}+\text{ . . . }+e^{\beta_{M}}=0&lt;/math&gt; for some positive integer &lt;math&gt;a&lt;/math&gt; <ins style="font-weight: bold; text-decoration: none;">(since &lt;math&gt;e^0=1&lt;/math&gt;)</ins>.</div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">Because the &lt;math&gt;\beta_1\text{, . . . , }\beta_M&lt;/math&gt; are algebraic, </ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">they are the roots of a polynomial</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">&lt;math&gt;f(z)=b z^M+ b_1 z^{M-1}+\text{ . . . }+b_{M-1} z + b_M&lt;/math&gt;</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">with integer coefficients &lt;math&gt;b\text{, }b_1\text{, . . . , }b_M&lt;/math&gt;, </ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">and because no &lt;math&gt;\beta_i&lt;/math&gt; is equal to zero &lt;math&gt;b_M\neq 0&lt;/math&gt; also.</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> </div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">===First Part===</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">Now we will multiply our equation with the integral &lt;math&gt;\int_0^{\infty}z^{\rho}\left[f(z)b^M\right]^{\rho + 1}e^{-z}dz&lt;/math&gt;, </ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">where &lt;math&gt;\rho&lt;/math&gt; is some positive integer.</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">We will write &lt;math&gt;\int_0^{\infty}&lt;/math&gt; as a shorthand.</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">This allows us to split the sum into two Parts:</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">:&lt;math&gt;P_1 = a\int_0^{\infty} +\text{ } e^{\beta_1}\int_{\beta_1}^{\infty} + \text{ . . . } + e^{\beta_M}\int_{\beta_M}^{\infty}&lt;/math&gt;</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> </div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">:&lt;math&gt;P_2 = 0 + e^{\beta_1}\int_0^{\beta_1} + \text{ . . . } + e^{\beta_M}\int_0^{\beta_M}&lt;/math&gt;</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> </div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">where &lt;math&gt;\int_0^{\beta_i}&lt;/math&gt; is a line integral along the line segment from &lt;math&gt;0&lt;/math&gt; to &lt;math&gt;\beta_i&lt;/math&gt; in the complex plane, </ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">and &lt;math&gt;\int_{\beta_i}^{\infty}&lt;/math&gt; is also a line integral obtained by integrating over the line from &lt;math&gt;\beta_i&lt;/math&gt; to &lt;math&gt;\infty&lt;/math&gt; parallel to the</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">real axis in the complex plane.</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> </div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">If &lt;math&gt;\beta_i&lt;/math&gt; is a real number these integrals are just normal Riemann integrals over the real numbers, and it's easy to see that it's valid to split them up in this way. </ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">So let &lt;math&gt;\beta_i&lt;/math&gt; be a complex number with imaginary part &lt;math&gt;\text{Im}\left(\beta_i\right)\neq 0&lt;/math&gt;. </ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">As above, &lt;math&gt;\int_0^{\beta_i}&lt;/math&gt; is the integral along the line segment from &lt;math&gt;0&lt;/math&gt; to &lt;math&gt;\beta_i&lt;/math&gt;, </ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">&lt;math&gt;\int_{\beta_i}^{R'}&lt;/math&gt; along the line segment parallel to the real axis from &lt;math&gt;\beta_i&lt;/math&gt; to a number &lt;math&gt;R'&lt;/math&gt; with real part &lt;math&gt;\text{Re}\left(R'\right)= R&lt;/math&gt;, </ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">&lt;math&gt;\int_{R'}^{R}&lt;/math&gt; along the line segment parallel to the imaginary axis from &lt;math&gt;R'&lt;/math&gt; to the real number &lt;math&gt;R&lt;/math&gt;, </ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">and &lt;math&gt;\int_{R}^0&lt;/math&gt; along the real axis from &lt;math&gt;R&lt;/math&gt; to &lt;math&gt;0&lt;/math&gt;.</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> </div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">So &lt;math&gt;\int_0^{\beta_i} + \int_{\beta_i}^{R'} + \int_{R'}^{R} + \int_{R}^0&lt;/math&gt; is an integral along a closed path in the complex plane, </ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">which is not self-intersecting if we choose &lt;math&gt;R&lt;/math&gt; large enough (&lt;math&gt;R&gt;\text{Re}\left(\beta_i\right)&lt;/math&gt;).</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">Since the function which is being integrated is analytical on the whole complex plane this integral evaluates to zero according to the Cauchy integral theorem.</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> </div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">Note that if we let &lt;math&gt;R\longrightarrow\infty&lt;/math&gt; the lenght of the line segment from  &lt;math&gt;R'&lt;/math&gt; to  &lt;math&gt;R&lt;/math&gt; stays the same </ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">while the function &lt;math&gt;z^{\rho}\left[f(z)b^M\right]^{\rho + 1}e^{-z}&lt;/math&gt; tends towards zero on that line segment. </ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">Using the estimation lemma for contour integrals it follows that </ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">&lt;math&gt;\left|\int_{R'}^{R}\right|\leq\left|R-R'\right|\cdot\max_{\left[R';R\right]}z^{\rho}\left[f(z)b^M\right]^{\rho + 1}e^{-z}\longrightarrow 0&lt;/math&gt;.</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> </div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">:&lt;math&gt;\lim_{R\rightarrow\infty}\left(\int_0^{\beta_i} + \int_{\beta_i}^{R'} + \int_{R'}^{R} + \int_{R}^0\right) = 0 \Rightarrow\int_0^{\beta_i} + \int_{\beta_i}^{\infty} +\text{ } 0 + \int_{\infty}^0 = 0\Rightarrow \int_0^{\beta_i} + \int_{\beta_i}^{\infty} = \int_{0}^{\infty}&lt;/math&gt;</ins></div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td></tr> <tr><td class="diff-marker" data-marker="−"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><del style="font-weight: bold; text-decoration: none;">We now have to multiply both sides with an improper integral which I will just call &lt;math&gt;I_{\rho}&lt;/math&gt;, with some positive integer &lt;math&gt;\rho&lt;/math&gt; as parameter.</del></div></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>===<ins style="font-weight: bold; text-decoration: none;">Second Part===</ins></div></td></tr> <tr><td class="diff-marker" data-marker="−"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><del style="font-weight: bold; text-decoration: none;">This will allow us to split the sum into two parts &lt;math&gt;P_1+P_2</del>=<del style="font-weight: bold; text-decoration: none;">0&lt;/math&gt;, where &lt;math&gt;P_1&lt;/math&gt; and &lt;math&gt;P_2&lt;/math&gt; have the following properties:</del></div></td><td colspan="2" class="diff-side-added"></td></tr> <tr><td class="diff-marker" data-marker="−"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><del style="font-weight: bold; text-decoration: none;">*&lt;math&gt;P_1&lt;/math&gt; is an integer that can be divided by &lt;math&gt;\rho!&lt;/math&gt; and &lt;math&gt;\frac{P_1}{\rho!}\equiv a b^{\rho M+M}b_{M}^{\rho +1}\text{ mod }(\rho+1)&lt;/math&gt; </del></div></td><td colspan="2" class="diff-side-added"></td></tr> <tr><td class="diff-marker" data-marker="−"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><del style="font-weight: bold; text-decoration: none;">:where &lt;math&gt;b&lt;/math&gt;, &lt;math&gt;b_M&lt;/math&gt; are the first and last coefficient of the polynomial with integer coefficients that has the &lt;math&gt;\beta_{1}\text{, . . . , }\beta_{M}&lt;/math&gt; as it's roots (so neither &lt;math&gt;a&lt;/math&gt;, &lt;math&gt;b&lt;/math&gt; nor &lt;math&gt;b_M&lt;/math&gt; is zero).</del></div></td><td colspan="2" class="diff-side-added"></td></tr> <tr><td class="diff-marker" data-marker="−"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><del style="font-weight: bold; text-decoration: none;">*&lt;math&gt;|P_2|\lt\chi K^{\rho}&lt;/math&gt; for some positive constants &lt;math&gt;\chi\text{ and }K&lt;/math&gt;.</del></div></td><td colspan="2" class="diff-side-added"></td></tr> <tr><td class="diff-marker" data-marker="−"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><del style="font-weight: bold; text-decoration: none;">So, if we choose &lt;math&gt;\rho&lt;/math&gt; big enough &lt;math&gt;\frac{P_2}{\rho!}&lt;/math&gt; tends towards zero while &lt;math&gt;\frac{P_1}{\rho!}&lt;/math&gt; always stays an integer. </del></div></td><td colspan="2" class="diff-side-added"></td></tr> <tr><td class="diff-marker" data-marker="−"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><del style="font-weight: bold; text-decoration: none;">Furthermore the complicated congruence guarantees that &lt;math&gt;\frac{P_1}{\rho!}&lt;/math&gt; is not zero if &lt;math&gt;\rho&lt;/math&gt; is a multiple of &lt;math&gt;a b b_M&lt;/math&gt;.</del></div></td><td colspan="2" class="diff-side-added"></td></tr> <tr><td class="diff-marker" data-marker="−"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><del style="font-weight: bold; text-decoration: none;">Since &lt;math&gt;P_1+P_2</del>=<del style="font-weight: bold; text-decoration: none;">0&lt;/math&gt;  it should also be the case that  &lt;math&gt;\frac{P_1}{\rho!}+\frac{P_2}{\rho!}</del>=<del style="font-weight: bold; text-decoration: none;">0&lt;/math&gt;.</del></div></td><td colspan="2" class="diff-side-added"></td></tr> <tr><td class="diff-marker" data-marker="−"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><del style="font-weight: bold; text-decoration: none;">But that can't be when the first part get's arbitrarily small while the second part stays a non-zero integer.</del></div></td><td colspan="2" class="diff-side-added"></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Claim</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Claim</div></td></tr> </table> Beijayl https://arguably.io/index.php?title=Pi_is_transcendental&diff=291&oldid=prev JFG at 20:59, 22 January 2022 2022-01-22T20:59:19Z <p></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Older revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 20:59, 22 January 2022</td> </tr><tr><td colspan="2" class="diff-lineno" id="mw-diff-left-l36">Line 36:</td> <td colspan="2" class="diff-lineno">Line 36:</td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;references/&gt;</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;references/&gt;</div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">[[Category:Mathematics]]</ins></div></td></tr> </table> JFG https://arguably.io/index.php?title=Pi_is_transcendental&diff=260&oldid=prev Beijayl at 03:07, 20 January 2022 2022-01-20T03:07:25Z <p></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Older revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 03:07, 20 January 2022</td> </tr><tr><td colspan="2" class="diff-lineno" id="mw-diff-left-l1">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td></tr> <tr><td class="diff-marker" data-marker="−"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><del style="font-weight: bold; text-decoration: none;">Just creating </del>some <del style="font-weight: bold; text-decoration: none;">pages </del>I'<del style="font-weight: bold; text-decoration: none;">d like to see filled</del>, if <del style="font-weight: bold; text-decoration: none;">any </del>of <del style="font-weight: bold; text-decoration: none;">you want to try their hand</del>!</div></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">'''Pi is transcendental''' is a famous claim regarding the nature of the number &lt;math&gt;\pi&lt;/math&gt;. </ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">It was first proven by Lindemann in 1882, buildung on methods developed by Hermite, who was able to prove that the number &lt;math&gt;e&lt;/math&gt; is transcendental roughly 10 years earlier in 1873.</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">With the help of Weierstrass their findings could be generalized to the Lindemann-Weierstrass theorem in 1885.</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> </div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">==Proof==</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">The proof sketched out here is not the original proof by Lindemann but a later proof by David Hilbert which is more accessible.</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> </div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">Suppose &lt;math&gt;\pi&lt;/math&gt; is algebraic. </ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">Then &lt;math&gt;\alpha_{1}:=i\pi&lt;/math&gt; is also algebraic, so it is the root of an &lt;math&gt;n&lt;/math&gt;-th degree polynomial with integer coefficients. </ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">Let &lt;math&gt;\alpha_{2}\text{, . . . , }\alpha_{n}&lt;/math&gt; be the other roots of this polynomial.</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">Since &lt;math&gt;1+e^{i\pi}=0&lt;/math&gt; we have </ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">&lt;math&gt;(1+e^{\alpha_{1}})(1+e^{\alpha_{2}})\text{ . . . }(1+e^{\alpha_{n}})=1+e^{\beta_{1}}+e^{\beta_{2}}+\text{ . . . }+e^{\beta_{N}}=0&lt;/math&gt; </ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">with some algebraic &lt;math&gt;\beta_{1}\text{, . . . , }\beta_{N}&lt;/math&gt;. </ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">Disregarding the &lt;math&gt;\beta_{i}&lt;/math&gt; that are equal to &lt;math&gt;0&lt;/math&gt;, we end up with </ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">&lt;math&gt;a+e^{\beta_{1}}+e^{\beta_{2}}+\text{ . . . }+e^{\beta_{M}}=0&lt;/math&gt; for </ins>some <ins style="font-weight: bold; text-decoration: none;">positive integer &lt;math&gt;a&lt;/math&gt;.</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> </div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">We now have to multiply both sides with an improper integral which </ins>I <ins style="font-weight: bold; text-decoration: none;">will just call &lt;math&gt;I_{\rho}&lt;/math&gt;, with some positive integer &lt;math&gt;\rho&lt;/math&gt; as parameter.</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">This will allow us to split the sum into two parts &lt;math&gt;P_1+P_2=0&lt;/math&gt;, where &lt;math&gt;P_1&lt;/math&gt; and &lt;math&gt;P_2&lt;/math&gt; have the following properties:</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">*&lt;math&gt;P_1&lt;/math&gt; is an integer that can be divided by &lt;math&gt;\rho!&lt;/math&gt; and &lt;math&gt;\frac{P_1}{\rho!}\equiv a b^{\rho M+M}b_{M}^{\rho +1}\text{ mod }(\rho+1)&lt;/math&gt; </ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">:where &lt;math&gt;b&lt;/math&gt;, &lt;math&gt;b_M&lt;/math&gt; are the first and last coefficient of the polynomial with integer coefficients that has the &lt;math&gt;\beta_{1}\text{, . . . , }\beta_{M}&lt;/math&gt; as it</ins>'<ins style="font-weight: bold; text-decoration: none;">s roots (so neither &lt;math&gt;a&lt;/math&gt;, &lt;math&gt;b&lt;/math&gt; nor &lt;math&gt;b_M&lt;/math&gt; is zero).</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">*&lt;math&gt;|P_2|\lt\chi K^{\rho}&lt;/math&gt; for some positive constants &lt;math&gt;\chi\text{ and }K&lt;/math&gt;.</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">So</ins>, if <ins style="font-weight: bold; text-decoration: none;">we choose &lt;math&gt;\rho&lt;/math&gt; big enough &lt;math&gt;\frac{P_2}{\rho!}&lt;/math&gt; tends towards zero while &lt;math&gt;\frac{P_1}{\rho!}&lt;/math&gt; always stays an integer. </ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">Furthermore the complicated congruence guarantees that &lt;math&gt;\frac{P_1}{\rho!}&lt;/math&gt; is not zero if &lt;math&gt;\rho&lt;/math&gt; is a multiple </ins>of <ins style="font-weight: bold; text-decoration: none;">&lt;math&gt;a b b_M&lt;/math&gt;.</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">Since &lt;math&gt;P_1+P_2=0&lt;/math&gt;  it should also be the case that  &lt;math&gt;\frac{P_1}{\rho!}+\frac{P_2}{\rho</ins>!<ins style="font-weight: bold; text-decoration: none;">}=0&lt;/math&gt;.</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">But that can't be when the first part get's arbitrarily small while the second part stays a non-zero integer.</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> </div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">{{Claim</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">|Claim=Pi is transcendental</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">|Level=Proven</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">|Nature=Theoretical</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">|Counterclaim=Pi is algebraic</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">|DependentOn1=</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">|DependencyOf1=</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">}}</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> </div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">==References==</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">&lt;references/&gt;</ins></div></td></tr> </table> Beijayl