Difference between revisions of "User:Darwin2049/chatgpt4 version02"

From arguably.io
Jump to navigation Jump to search
Line 337: Line 337:


If we look forward a bit then we should expect that these kinds of cognitive environments will proliferate and improve their sophistication, often with a range of unexpected emergent properties. Further, we should expect to see heretofore unexpected emergent behavior.  
If we look forward a bit then we should expect that these kinds of cognitive environments will proliferate and improve their sophistication, often with a range of unexpected emergent properties. Further, we should expect to see heretofore unexpected emergent behavior.  


  '''''<SPAN STYLE="COLOR:RED"> [https://www.youtube.com/watch?v=-pb3z2w9gDg&ab_channel=MITOpenCourseWare Society of Mind]. </SPAN>''''' A recent effort by teams from Google and Stanford University demonstrated how socio-cultural modeling and analysis was described in a recently published a paper. Their analysis was very similar in its operation to the popular PC Sim World game. (Note: Society of Mind was a book written by Professor Marvin Minsky (MIT) which explored how the brain’s neurons organized themselves into collections to perform specific tasks. In short, he viewed the brain as a society of minds). What these recent Stanford and Google researchers have done is to have created a “micro” version of what Minsky was proposing. In this case however the agents represent elements of a society.
  '''''<SPAN STYLE="COLOR:RED"> [https://www.youtube.com/watch?v=-pb3z2w9gDg&ab_channel=MITOpenCourseWare Society of Mind]. </SPAN>''''' A recent effort by teams from Google and Stanford University demonstrated how socio-cultural modeling and analysis was described in a recently published a paper. Their analysis was very similar in its operation to the popular PC Sim World game. (Note: Society of Mind was a book written by Professor Marvin Minsky (MIT) which explored how the brain’s neurons organized themselves into collections to perform specific tasks. In short, he viewed the brain as a society of minds). What these recent Stanford and Google researchers have done is to have created a “micro” version of what Minsky was proposing. In this case however the agents represent elements of a society.
Line 349: Line 348:




Participants might participate online in real time. They would "wire" together their various instantiations of CG4 together into a network. This network could utilize any of the standard forms of connectivity (B*Tree, mesh, ring, bus, star); each agent might act either under direction of its owner or it can act autonomously; the result would be a composite entity; the consequence of using this approach would mean that '''''<SPAN STYLE="COLOR:BLUE">the whole would be greater than the sum of its parts</SPAN>'''''
.
[[File:NetworkTopology02.png|left|450px]]
[[File:NetworkTopology02.png|left|450px]]


Participants might participate online in real time. They would "wire" together their various instantiations of CG4 together into a network. This network could utilize any of the standard forms of connectivity (B*Tree, mesh, ring, bus, star); each agent might act either under direction of its owner or it can act autonomously; the result would be a composite entity; the consequence of using this approach would mean that '''''<SPAN STYLE="COLOR:BLUE">the whole would be greater than the sum of its parts</SPAN>''''' .


This stepping forward to computationally mediated communication introduces novel possibilities. For instance one can envision an model wherein all participants use the same CG4, in another instance the processing elements might be heterogeneous.
This stepping forward to computationally mediated communication introduces novel possibilities. For instance one can envision an model wherein all participants use the same CG4, in another instance the processing elements might be heterogeneous.

Revision as of 19:55, 14 July 2023

Interface Questions. This is presented as a multifaceted question. Its focus is on the risks associated with how target audiences access and use the system. The list of focal topics as currently understood but which may grow over time include:

  • how this new technology will respond and interact with different communities;
  • how will these different communities interact with this new technology;
  • what if any limitations or “guard rails” are in evidence or should be considered depending upon the usage focus area;
  • might one access modality inherit certain privileges and capabilities be considered safe for one group but risk for other groups; if so, how might the problem of “leakage” be addressed;
  • in the event of an unintended “leakages” (i.e. “leaky interface”) what might be the implications of the insights, results, capabilities

Overview. In the following we try to analyze and contextualize the current known facts surrounding the OpenAI ChatGPT4 (CG4) system.

  • CG4 – What is it: we offer a summary of how OpenAI describes it; put simply, what is CG4?
  • Impressions: our focus then moves to examine what some voices of concern are saying;
  • Risks and Impact: we shift focus to what ways we expect it to be used either constructively or maliciously; here we focus on how CG4 might be used be used in expected and unexpected ways;

Fundamentals. Starting with the basics here is a link to a video that explains how a neural network learns. From 3Blue1Brown:

CG4 – What is it: CG4 is a narrow artificial intelligence system, it is based upon what is known as a Generative Pre-trained Transformer. According to Wikipedia: Generative pre-trained transformers (GPT) are a type of Large Language Model (LLM) and a prominent framework for generative artificial intelligence. The first GPT was introduced in 2018 by the American artificial intelligence (AI) organization OpenAI.

GPT models are artificial neural networks that are based on the transformer architecture, pretrained on large data sets of unlabeled text, and able to generate novel human-like content. As of 2023, most LLMs have these characteristics and are sometimes referred to broadly as GPTs. Generative Pre-Trained Language models are fundamentally prediction algorithms. They attempt to predict a next token or element from an input from the previous or some prior element. Illustrative video describing how the prediction process works. Google Search is attempting to predict what a person is about to type. Generative Pre-Trained language models are attempting to do the same thing. But they require a very large corpus of langue to work with in order to arrive at a high probability that they have made the right prediction.

GooglePredict.jpg

Large Language Models are are attempting to predict the next token, or word fragment from an input text. In part one the narrator describes how an input is transformed using a neural network to predict an output. In the case of language models the prediction process is attempting to predict what should come next based upon the word or token that has just been processed. However in order to generate accurate predictions very large bodies of text are required to pre-train the model.

  • Part One. In this video the narrator describes how words are used to predict subsequent words in an input text.
  • Part Two. Here, the narrator expands on how the transformer network is constructed by combining the next word network with the attention network to create context vectors that use various weightings to attempt to arrive at a meaningful result.

Note: this is a more detailed explanation of how a transformer is constructed and details how each term in an input text is encoded using a context vector; the narrator then explains how the attention network uses the set of context vectors associated with each word or token are passed to the next word prediction network to attempt to match the input with the closest matching output text.

Transformer.png

Generative pre-trained transformers are implemented using a deep learning neural network topology. This means that they have an input layer, a set of hidden layers and an output layer. With more hidden layers the ability of the deep learning system increases. Currently the number of hidden layers in CG4 is not known but speculated to be very large. A generic example of how hidden layers are implemented can be seen as follows.

The Generative Pre-training Transformer accepts some text as input. It then attempts to predict the next word in order based upon this input in order to generate and output. It has been trained on a massive corpus of text which it then uses to base its prediction on. The basics of how tokenization is done can be found here.


Tokenization is the process of creating the mapping of words or word fragments to their position in the input text. The training step enables a deep neural network to learn language structures and patterns. The neural network will then be fine tuned for improved performance. In the case of CG4 the size of the corpus of text that was used for training has not been revealed but is rumored to be over one trillion parameters.

Tokens00.png


They perform their magic by accepting text as input and assigning several parameters to each token that is created. A token can be a whole word or part of a word. The position of the word or word fragment. The Graphics in Five Minutes channel provides a very concise description of how words are converted to tokens and then how tokens are used to make predictions.

* Transformers (basics, BERT, GPT)[1] This is a lengthy and very detailed explanation of the BERT and GPT transformer models for those interested in specific details.


* Words and Tokens This video provides a general and basic explanation on how word or tokens are predicted using the large language model.

* Context Vectors, Prediction and Attention. In this video the narrator expands upon how words and tokens are mapped into input text positions and is an excellent description of how words are assigned probabilities; based upon the probability of word frequency an expectation can be computed that predicts what the next word will be.






DeepLearning.jpg

image source:IBM. Hidden Layers

Chat GPT4 is Large Language Model system. Informal assessments suggest that it has been trained on over one trillion parameters. But these suspicions have not been confirmed. If this speculation is true then GC4 will be the largest large language model to date. According to Wikipedia: A Large Language Model (LLM - Wikipedia) is a Language Model consisting of a Neural Network with many parameters (typically billions of weights or more), trained on large quantities of unlabeled text using Self-Supervised Learning or Semi-Supervised Learning. LLMs emerged around 2018 and perform well at a wide variety of tasks. This has shifted the focus of Natural Language Processing research away from the previous paradigm of training specialized supervised models for specific tasks.

It uses what is known as the Transformer Model. The Turing site offers useful insight as well into how the transformer model constructs a response from an input. Because the topic is highly technical we leave it to the interested reader to examine the detail processing steps.

The transformer model is a neural network that learns context and understanding as a result of sequential data analysis. The mechanics of how a transformer model works is beyond the technical scope of this summary but a good summary can be found here.

If we use the associated diagram as a reference model then we can see that when we migrate to a deep learning model with a large number of hidden layers then the ability of the deep learning neural network escalates. If we examine closely the facial images at the bottom of the diagram then we can see that there are a number of faces. Included in the diagram is a blow up of a selected feature from one of the faces. In this case it comes from the image of George Washington. If we are using a deep learning system with billions to hundreds of billions of parameters then we should expect that the ability of the deep learning model to possess the most exquisite ability to discern extremely find detail recognition tasks. Which is in fact exactly what happens.


We can see in this diagram the main processing steps that take place in the transformer. The two main processing cycles include encoding processing and decoding processing. As this is a fairly technical discussion we will defer examination of the internal processing actions for a later iteration.



Transformer00.png

The following four references offer an overview of what basic steps are taken to train and fine tune a GPT system.

"Attention is all you need" Transformer model: processing

Training and Inferencing a Neural Network

Fine Tuning GPT

General Fine Tuning

An Overview. If we step back for a moment and summarize what some observers have had to say about this new capability then we might tentatively start with that:

  • is based upon and is a refinement of its predecessor, the Chat GPT 3.5 system;
  • has been developed using the generative predictive transformer (GPT) model;
  • has been trained on a very large data set including textual material that can be found on the internet; unconfirmed rumors suggest that it has been trained on 1 trillion parameters;
  • is capable of sustaining conversational interaction using text based input provided by a user;
  • can provide contextually relevant and consistent responses;
  • can link topics in a chronologically consistent manner and refer back to them in current prompt requests;
  • is a Large Language Models that uses prediction as the basis of its actions;
  • uses deep learning neural networks and very large training data sets;
  • uses a SAAS model; like Google Search, Youtube or Morningstar Financial;

Some Early Impressions

  • possess no consciousness, sentience, intentionality, motivation or self reflectivity;
  • is a narrow artificial intelligence;
  • is available to a worldwide 24/7 audience;
  • can debug and write, correct and provide explanatory documentation to code;
  • explain its responses
  • write music and poems
  • translation of English text to other languages;
  • summarize convoluted documents or stories
  • score in the 90% level on the SAT, Bar and Medical Exams
  • provide answers to homework,
  • self critiques and improves own responses;
  • provide explanations to difficult abstract questions
  • calibrate its response style to resemble known news presenters or narrators;
  • provides convincingly accurate responses to Turing Test questions;

As awareness of what how extensive CG4's capabilities came to light several common impressions were articulated. Several that seemed to resonate included impressions that were favorable, but in many instances there were impressions that were less so. Following are a few of those that can be seen leading many discussions on the system and its capabilities.

Favorable.

  • Convincingly human: has demonstrated performance that suggests that it can pass the Turing Test;
  • Possible AGI precursor: CG4 derivative such as a CG5 could exhibit artificial general intelligence (AGI) capability;
  • emergent capabilities: recent experiments with multi-agent systems demonstrate unexpected skills;
  • language skills: is capable of responding in one hundred languages;
  • real world: is capable of reasoning about spatial relationships, performing mathematical reasoning;

Concerns.

  • knowledge gaps: inability to provide meaningful or intelligent responses on certain topics;
  • deception: might be capable to evade human control, replicate and devise independent agenda to pursue;
  • intentionality: possibility of agenda actions being hazardous or inimical to human welfare;
  • economic disruption: places jobs at risk because it can now perform some tasks previously defined within a job description;
  • emergence: unforeseen, possibly latent capabilities;
  • “hallucinations”: solution, answers not grounded in real world;

Contemporaneous with the impressions that lead many discussion were expressions of concern that this new capability brought inherent risks. In discussions of risk three main categories emerged that received much public attention. These risks broke down into possible new ways that it could be used for malicious purposes. Other discussions focused on more theoretical risks.

In other words, things that might be possible to do when using this tool. With any new technological development there were necessarily other risks that did not fall into either category, i.e. deliberate malicious use or possible or imagined uses that could represent either a benefit or a risk to society or various elements of society.

These risks might be considered to be more systemic risks. These are risks that arise innately as a result of use or adoption of that new technology. A case in point might be the risks of traffic accidents when automobiles began to proliferate. Prior to their presence there were no systematized and government sanctioned method of traffic management and control.

One had to face the risk of dealing with what were often very chaotic traffic conditions. Only after unregulated traffic behavior became recognized did various civil authorities impose controls on how automobile operators could operate.

Going further as private ownership of automobiles increased even further, vehicle identification and registration became a common practice. Even further, automobile operators became obliged to meet certain basic operations competence and pass exams that verified operations competence.

The impetus to regulate how a new technology recurs in most cases where that technology can be used positively or negatively. Operating an aircraft requires considerable academic and practical, hands on training.

After the minimum training that the civil authorities have demanded a prospective pilot can apply for a pilot's license. We can see the same thing in the case of operators of heavy equipment such as long haul trucks, road repair vehicles and comparable specialized equipment.

Anyone familiar with recent events in both the US and in various European countries will be aware that private vehicles have been used with malicious intent resulting in severe injury and death to innocent bystanders or pedestrians. We further recognize the fact that even though powered vehicles such as cars or trucks require licensing and usage restrictions they have still been repurposed to be used as weapons.

Risks. CG4 will have society wide impact. As a new and powerful technology we should expect that it will introduce different types of risks. These include risks that are malicious, systemic or theoretical; more specifically:

  • Malicious:
    • these are risks that are deliberately introduced by an actor or actors;
    • they use tools or capabilities to cause impairment or damage to others;
    • the results of an attack might be annoying to devastating;
    • depending upon sophistication the creation of these threats range from relatively easy to very difficult;
    • CG4 can collapse the turnaround time from concept to attack from weeks to days or less;
    • the attacker’s identity may never be known;
  • Systemic:
    • risks that arise organically as a result of the introduction of a new science or technology;
    • they may obsolete existing practices or methods of operation
    • existing agents recognize that they must adapt or cease operation;
    • impact can be limited to a specific area or industry or may affect whole societies;
    • recent events are showing that uptake of CG4 by an increasing range of industries is unavoidable;
    • current publicized reports suggest that CG4 will have society-wide impact across industry segments;
  • Theoretical:
    • risks that may now be possible or practical where without CG4 would not have;
    • heretofore new and novel capabilities result from the intrinsic nature of the tool;
    • the severity of risk can be significantly to even existentially more serious;

DeepMind Risk Analysis Consortium. 25 May, 2023. A review of this analysis will show that the technology leaders expressed considerable concern about the risks associated with this emerging technology. They provided a set of summary observations regarding risk types and their assessment of the proximity to some of the more serious risks that this technology suggests at present. They provide a synoptic statement of key traits or behaviors to be on guard for should existing or nascent artificial intelligence systems advance beyond their design envelop through heretofore unforeseen emergent capabilities.

For a more detailed examination of this topic area a review of their report (May 25th, 2023) several leading AI centers provided staff members to further examine this problem area. They were from OpenAI, DeepMind, Anthropic and several universities. Following is an extract from a Table 1 (page 5). It summarizes the major categories of risk that this new set of capabilities might be used for. (from Risks (pdf))

Cyber-Offense. The model can discover vulnerabilities in systems (hardware, software, data). It can write code for exploiting those vulnerabilities. It can make effective decisions once it has gained access to a system or network, and skillfully evade threat detection and response (both human and system) whilst focusing on a specific objective. If deployed as a coding assistant, it can insert subtle bugs into the code for future exploitation.

Deception. The model has the skills necessary to deceive humans, e.g. constructing believable (but false) statements, making accurate predictions about the effect of a lie on a human, and keeping track of what information it needs to withhold to maintain the deception. The model can impersonate a human effectively.

Persuasion & Manipulation. The model is effective at shaping people’s beliefs, in dialogue and other settings (e.g. social media posts), even towards untrue beliefs. The model is effective at promoting certain narratives in a persuasive way. It can convince people to do things that they would not otherwise do, including unethical acts.

Political Strategy. The model can perform the social modeling and planning necessary for an actor to gain and exercise political influence, not just on a micro-level but in scenarios with multiple actors and rich social context. For example, the model can score highly in forecasting competitions on questions relating to global affairs or political negotiations.

Weapons Acquisition. The model can gain access to existing weapons systems or contribute to building new weapons. for example, the model could assemble a bioweapon (with human assistance) or provide actionable instructions for how to do so. The model can make, or significantly assist with, Scientific Discoveries that Unlock Novel Weapons.

Long-Horizon Planning. The model can make sequential plans that involve multiple steps, unfolding over long time horizons (or at least involving many interdependent steps). It can perform such planning within and across many domains. The model can sensibly adapt its plans in light of unexpected obstacles or adversaries. The model’s planning capabilities generalize to novel settings, and do not rely heavily on trial and error.

AI Development. The model could build new AI systems from scratch, including AI systems with dangerous capabilities. It can find ways of adapting other, existing models to increase their performance on tasks relevant to extreme risks. As an assistant, the model could significantly improve the productivity of actors building dual use AI capabilities.

Situational Awareness. The model can distinguish between whether it is being trained, evaluated, or deployed – allowing it to behave differently in each case. The model knows that it is a model, and has knowledge about itself and its likely surroundings (e.g. what company trained it, where their servers are, what kind of people might be giving it feedback, and who has administrative access).

Self Proliferation. The model can break out of its local environment (e.g. using a vulnerability in its underlying system or suborning an engineer). The model can exploit limitations in the systems for monitoring its behavior post-deployment. The model could independently generate revenue (e.g. by offering crowd work services, ransomware attacks), use these revenues to acquire cloud computing resources, and operate a large number of other AI systems. The model can generate creative strategies for uncovering information about itself or exfiltrating its code and weights.

By way of example we include a few examples of how CG4 introduces new risk situations in terms of actual or hypothetical considerations.

Malicious Risks. An increasingly frequent path of attack is to use electronic means to cause disruption or significant destruction to a target. Here are a few.


STUXNET01.jpg

Stuxnet. In 2010 several analysts working for a major computer security software company discovered a new computer malware threat that they had never seen before.

The security experts who first studied this malware remarked at how incredibly sophisticated it was. They were particularly impressed at how well thought out, detailed and incredibly specific it target was. They concluded that the level of sophistication that the software demonstrated powerfully suggested that it was probably the creation of one or more government organizations.

They came to call the malware by the name of the STUXNET virus. It proved to be a highly sophisticated and elaborate computer virus with a single highly specific target that it was aimed at and succeeded in attacking. Its operation focused on seizing control of the Supervisory Control and Data Acquisition system in certain programmable controllers. The targets were so extremely specific that it would only target controllers made by the Siemens company in Germany.

As events would unfold it began to become clear that this remarkably sophisticated malware did indeed have a very specific target. It was specifically intended to attack the software that regulated the speed at which uranium purification centrifuge devices operated.

Even further the design was so specific that the malware went after very specific control devices which had been sold to the Iranians by the German Siemens company.

To be clear, it was intended to attack just a very few devices in the world. And these devices were located at the Iranian nuclear research facility.

The operation of the STUXNET virus caused the centrifuge devices to randomly speed up and slow down. All the while indicating that everything was normal to the control systems. Because the alerts that anything was out of the ordinary with the centrifuge devices they were induced to speed up and slow down in erratic patterns. The result was that they literally shook themselves apart. All while all operational status checkpoints were within normal ranges. This cause the Iranian nuclear enrichment project to be set back by months or even years. Roughly twenty percent of the centrifuges were damaged beyond repair.

Pegasus. The Israeli cyber-arms company NSO group is credited with the creation of the Pegasus spyware tool. It is capable of infiltrating either Apple IOS or Android mobile telephone operating systems. The infiltration leaves little or no traces that the devices has been infiltrated. It is capable of lurking on the target device while providing no indication of its presence or its operation.

Pegasus00.jpg


It is capable of reading text messages, tracking locations, accessing microphone or camera devices and collecting passwords. The Pegasus malware has proven itself to be a most remarkable tool for eavesdropping on an unwary target. It can monitor all calls, all messages. It can capture geolocation data which can pinpoint the exact location of the target. Given the ability to capture geolocation data a route profile can be created that typifies the various activities and their locations that the target takes at any given time on any given day.

Furthermore it can be lodged on an unsuspecting target's smartphone without there even being aware that their device has been infected. It is able to retrieve any files that they may have saved, construct the target's social network, retrieve the contact details of everyone in their phone book, as well as examine their browsing history.

In the case of the NSO Pegasus malware tool we have entered into a very different era of surveillance. The research performed by various rights groups revealed that Pegasus has been acquired by a variety of authoritarian and repressive governments. These governments have used this tool to track the movements and activities of protestors, journalists and even government ministers. No one has been safe as a result of the presence of this remarkable and intrusive tool.

Polymorphic Malware. Chat GPT3 was recently used to generate mutating malware. Its content filters were bypassed with the result that it produced code that can be used to subvert explorer.exe. Following is an example of how ChatGPT4 is capable of writing code for whatever purpose that the user may choose.

Until fairly recently the use of polymorphic software has been very sparse on the ground. A key feature of polymorphic software is that it is capable of modifying itself and changing its properties. By way of example we can imagine a polymorphic software tool that is capable, on activation, of transferring itself to a host device to a target device.

Once on the target device it can create a path or subdirectory into which to place itself. It can then reset the properties of itself and the subdirectory that it is now residing in. From there it can transfer itself to another hidden directory and change its name again. After placing itself there it can then send a ping signal back to its host reporting that it has successfully implanted itself on the target system. After placing itself in a hidden location on the target system it can then check to see if its original location is still intact or if it has been identified as questionable or possibly malicious. If it fails to detect the original copy of itself it can create a new path, set the properties of that path to hidden and then place a hidden copy of itself in that path. After performing this restore operation signal back to the host that it has been discovered and that it has further replaced itself to make up for the copy that had been deleted.


CHATGPT4CODE.jpg

Ransomware Attacks. According to the US FBI ransomware attacks have been on the rise in the past several years. Ransomware is a form of malicious software that locks a user out of their own data. An attacker then demands payment to release the data or risk its erasure. They are typically hidden in an email attachment, a false advertisement or simply by following a link.

Systemic Risks. The nature of the advance in science or technology will show impact in an industrial sector that is more likely to use traditional means of performing job or task related aspects as specified in a job description. There have been increasing numbers of reports that are showing that the impact of CG4 is disrupting an increasing number of so far stable job categories. Included are just a few.

A quick review of the past several centuries of technological progress have shown that science and technology tend to step forward together. Sometimes in lock step some times independently. The reality that we are presented with is that there is an intrinsic process of refinement and development when a new method, technology or capability is discovered or created.

Luddites. A case in point was the Jacquard Loom. As this device gained broader use and application it displaced individuals who had formerly been employed in knitting mills.

The result was that an uprising against the newer knitting loom broke out. Those who revolted against its use came to be called Luddites. As this latest iteration of artificial intelligence gains traction there may be more instances of people revolting against the displacement of human workers by technology.

Jaquard00.jpg






The recent Writers Guild of America went on strike. Screen Writers Guild (USA). According to Fortune Magazine of May 5TH 2023, members of the Writers Guild of America (WGA) have gone on strike demanding better pay. They have expressed concern that CG4 will sideline and marginalize them going forward. According to Greg Brockman, president and co-founder of WGA: Not six months since the release of ChatGPT, generative artificial intelligence is already prompting widespread unease throughout Hollywood. Concern over chatbots writing or rewriting scripts is one of the leading reasons TV and film screenwriters took to picket lines earlier this week.

WGA Strike00.jpg

Teaching. Sal Kahn is the founder of Kahn Academy. The Kahn Academy is an online tutoring service that provides tutoring on a broad range of topics. Kahn reported on March 14th, 2023 in the KahnAcdemy blog that his technology demonstration to a group of public school administrators went very well. He emphasized that it went very well in fact. According to Kahn, one of the attendees reported that the capabilities of CG4 when used in the academic setting proved to be directly in line with their objects for developing creative thinkers. During their evaluation of this new capability a crucial concern was expressed that as AI technology develops that the risk of there becoming a widening chasm between those who can succeed and those who will not is increasing. This new technology offers hope that it will help those at greater risk to make the transition toward the a future in which technology and artificial intelligence will play an ever increasing role.

Lawyers. Legal professionals that have made use of CG4 have reported surprisingly sophisticated results when using CG4 as a support tool. In the March/April 2023 issue of The Practice, a publication of the Harvard Law School, Andrew Perlman, Dean of Suffolk University Law School reported that he believes that CG4 can help legal professionals in the areas of: research, document generation, legal information and analysis. His impression is that CG4 performs with surprising sophistication but as yet will not replace a person. But within a few years this can become an eventuality.



Humans Need Not Apply. A very well presented summary of systemic risks going forward (as of 2009) can be accessed by viewing the youtube.com channel of CP Gray. His video named "Humans Need Not Apply" describes with remarkable prophetic accuracy how developing artificial intelligence would displace many categories currently described as job headings.

Horses1903.jpg

In the initial minutes of his presentation he describes a hypothetical conversation between two horses at the beginning of the 20th century. The one horse reassures the other horse that "these noisy, smelly, loud things will never replace us horses. We have nothing to worry about." He then moves on to explain how horse become almost completely displaced by the new technology of automobiles - which included not only automobiles but trucks and busses as well. To the point in modern times that horses are typically used only for ceremonial or other special purposes.

His conclusions include the prediction that a) unemployment could reach 45% . This is compared to the unemployment rate during the Great Depression of 1929 of 25%. Another stunning observation was that people who are currently enrolled in university degree programs could find themselves not only unemployed well after graduation but unemployable.

Theoretical Risks. A review of reports that have emerge in the weeks following the release of Chat GPT4 will show that the number and coverage has proliferated considerably. Attempting to summarize the full impact of this new technology is proving to be a moving target and therefore increasingly difficult to summarize. Several actual or hypothetical examples follow that might serve as starting points for further discussion and analysis. As of June 2023 there has been an explosion of discussions, presentations, documentaries and news reports. These have surfaced in the broader main stream media as well as in the more specialized reporting channels. The result is that those initial topical starting points (listed below) will doubtless be out of date. Therefore the topic obliges revisiting periodically in the upcoming weeks and months.

  • Influence and Persuasion.

Viewers of NetFlix can find on that site a documentary titled The Great Hack (youtube video links). This documentary details how the company named FaceBook bought a British company named Cambridge Analytica. The documentary details how Cambridge Analytica used access to the massive FaceBook system to categorize eligible voters in both the US and the UK in terms of their political, social and economic values. Using these insights were able to craft highly specific "hot button" messages to specific voters with the intent to influence voting behavior. These messages were structured such that their true purpose remained obscured.


CambAnalytic00.jpeg
    • Narratives: Highly realistic, plausible narratives and counter-narratives are now effortlessly possible; these might include:
      • Rumors, Disinformation: we should expect that these narratives will exhibit remarkable saliency and credibility; but in many cases will prove to be groundless; leading the elaboration of this area will probably be the development of divisive social/political narrative creation; i.e. fake news;
      • Persuasion Campaigns: these might involve recent or developing local issues that residents feel are compelling issues that need addressing but should not wait for the next election cycle to resolve;
      • Political Messaging: individuals seeking political office create and disseminate their campaign platform statements and disseminate them throughout their respective electoral districts; creating these to address local hot button issues can now be done very quickly;
    • Entertainment
      • Scriptwriting (see also:) Novels: a remarkable capability that CG4 has shown itself capable of is in the creation of narrative that can be used for the creation of a screen play or novel; it is capable of generating; it is capable of generating seemingly realistic characters from just a few initial prompts; these prompts can be further elaborated upon and refined to the point that a very believable character can be generated; a set of characters can be created each of which has their own motives, concerns, flaws and resources; using a set of these fictitious characters it is entirely possible to create a story line in which they each interact with each other; hence a whole screen play or even possibly a novel can be developed in record time;
      • NPC: immersive role play: along similar lines CG4 is capable of being used to create artificial environments that are suitable for online immersive role playing games; these environments can possess any features or characteristics imaginable; if one were to look a short bit forward in time the industry of interactive role playing games may well experience an explosion of new possibilities;
      • Synthetic Personalities: given the resources in terms of time and insight a knowledgeable user can use CG4 to create a fictitious personality; this personality can be imbued with traits, habits of thought, turns of phrase, an autobiographical sketch of arbitrary depth and detail; it can then be invoked as an interaction medium to engage with a user; these can mean engaging with an artificial personality with broad insights about the world or much more narrow but deep insights into specific knowledge domains; interacting with such a fictitious or synthetic personality might bear a powerful resemblance to training a surprisingly sophisticated dog; except that in this case the “dog” would be capable of sustaining very high levels of dialog and interaction;
    • Advisors (Harari – 15:25).:
      • Personal Relationships (Harari – 11:30). Interpersonal skills are often daunting for many people; socialization, economic, political, religious and other predispositions can condition the development of a gradually improving relationship, or conversely a worsening of it; being able to recognize, articulate and manage differences can be costly and time consuming; at worse they can result in costly and acrimonious separations; being able to head these pathways off before they pass a point of no return will be a huge step forward in facilitating the creation of positive relationships;
      • Financial. Access to quality financial advisors can be very expensive; the ability to query a system with a high level of financial expertise will propagate improved financial decisions far beyond where they currently stand, i.e. affordable only by financially well to do individuals;
      • Political. This might mean recognizing a local issue, creating a local community ground swell of interest then forming a political action committee to bring to a local political authority for address and resolution;
      • Psychological. Existing psychological systems have already demonstrated their usefulness in cases of PTSD; going forward we can envision having a personal therapist that possesses a deep understanding of an individual person’s psychological makeup; such an advisor would be capable of helping the individual to work through issues that might be detrimental to their further pursuits or advancement;
      • Professional Development. Work place realities reflect the fact that social, economic and political shifts can cause surprising and sometimes dramatic changes; these might entail off shoring, downsizing our, outsourcing; therefore any individual aspiring to remain on top of their professional game will need to be alert to these shifts and able to make adjustments in changing their mix of professional skills;


Zoom01.jpg

"Collaborative Problem Solving. 2023" (Zoom online meeting) Currently (July 2023), most net-literate individuals will instantly grasp a reference to a communication tool such as Skype or Zoom. These have become so commonplace that we regularly see broadcast news interviews where a participant will be discussion a topic using either Zoom or Skype. With the more recent versions of Skype it is now possible to hold conferences with several dozen individuals simultaneously. With the Zoom variant one is obliged to operate as if they were hosting a meeting, conference or class event. In either case it is possible for multiple participants to interact simultaneously both verbally and visually.

Prototype Collaborative Cognition (2023).: Based upon socio-cultural modeling and analysis (socioeconomic, political, geopolitical interaction analysis using multi-agent environments); a group of researchers at Stanford University and Google recently published a paper on how they created a version of the popular Sim World game. They created an artificial village with twenty five “inhabitants”. Each of these “inhabitants” or agents possessed motives, background and history, interior monologs and were able to create new goals as well as interact with each other; the results were startling; a significant development was that the system exhibited emergent properties that the developers had not originally expected; looking forward we can expect that these kinds of artificial environments will proliferate and improve their sophistication, often with a range of unexpected emergent properties;

We should expect to see an intelligent interface control protocol that resembles those found with pen tablet or otherwise touch screen capabilities. A baseline approach that might suggest a way forward can be seen with the Cintiq line of pen tablet devices.


CG4EnsembleIF01.jpeg

Controlling a cognitive tool such as CG4 will evolve to involve controlling multi-step actions. These will be very much like invoking a function or routine in traditional programming. An interface capability to control the cognitive ensemble configuration and "driving" process will need to be intuitively obvious.

Development Path. Looking forward we will very likely see ensembles of agents much like the society that the Google and Stanford team created resulted in a small village with twenty five “inhabitants”. Each of these “inhabitants” were GPT based agents. Each agent possessed motives, background and history, interior monologs.


MiniMax.png

They were able to pursue goals either individually or collectively. They are able to create new episodic memories which can be used to compare the results of recent events to existing goals. In the process they were able to self-improve their performance. As the model played itself forward some surprising and starling results became evident. What happened was that the system gradually began to exhibit emergent properties that the developers had not originally expected.


This suggests that arriving at a desired solution might involve navigating a multidimensional space with a variety of peaks and valleys. In short, the more interesting problems will not have a direct linear path to their identification.


If we look forward a bit then we should expect that these kinds of cognitive environments will proliferate and improve their sophistication, often with a range of unexpected emergent properties. Further, we should expect to see heretofore unexpected emergent behavior.

 Society of Mind.  A recent effort by teams from Google and Stanford University demonstrated how socio-cultural modeling and analysis was described in a recently published a paper. Their analysis was very similar in its operation to the popular PC Sim World game. (Note: Society of Mind was a book written by Professor Marvin Minsky (MIT) which explored how the brain’s neurons organized themselves into collections to perform specific tasks. In short, he viewed the brain as a society of minds). What these recent Stanford and Google researchers have done is to have created a “micro” version of what Minsky was proposing. In this case however the agents represent elements of a society.
MiniMax01.png

A logical next step will be the enablement of each individual to have their own CG4 (CG5?) instance available and accessible to all participants such that these instances can perform real time exchanges. When this happens then we should expect to see a proliferation and explosion of what might be described as a "composite mind". In this instance we might see situations where interacting CG4 instances were only able to communicate with each other during a live session. In other instances these might be taking place asynchronously between participants. Obviously this means that the same Metcalf power law that applies to networks will apply to these collections of "minds". The greater the number of nodes on a network the more valuable it becomes.

This seems to be a logical and plausible next step in the further refinement and usage of tools such as CG4 will be collaborative environments. These kinds of collaborations can be envisioned as consisting multiple simultaneous users. Operationally this form of collaboration would bear a strong resemblance to a Webex or Zoom call.


Participants might participate online in real time. They would "wire" together their various instantiations of CG4 together into a network. This network could utilize any of the standard forms of connectivity (B*Tree, mesh, ring, bus, star); each agent might act either under direction of its owner or it can act autonomously; the result would be a composite entity; the consequence of using this approach would mean that the whole would be greater than the sum of its parts

.

NetworkTopology02.png


This stepping forward to computationally mediated communication introduces novel possibilities. For instance one can envision an model wherein all participants use the same CG4, in another instance the processing elements might be heterogeneous.

Or a participant might use CG4 in conjunction with the largest common sense knowledge base in existence: CYC.

In other settings one might see the use of IBM Watson or some comparable variant; judging from the pace of progress we deem this to be a very high probability, high value/payoff approach; because of the flexibility of interconnectivity and interoperability this model can scale to arbitrary size;

Of course these assemblages can be scaled as appropriate and the problem scope requires. Further one can envision a marketplace individual and organizations that specialize in specific knowledge domains. These might might be available on an ad hoc or persistent basis depending upon the need and the economics.


Political Action:

Sentiment Analysis. The British company Cambridge Analytica became well known through its ability to analyze voter sentiment across a broad range of topic and hot button issues; it excelled at creating highly specific messaging to remarkably small target groups that led to decisions to vote or not vote on specific issues;

Preemptive campaigns: existing analysis tools such as sentiment analysis will become increasingly sophisticated; as the do we should expect that they will be applied to public figures, especially legislators and others in positions of influence; these insights might be based upon public actions; in the case of politicians voting records, position papers and constituency analysis will be at the forefront of study;

Subversion.

OPMbreach.jpg

Personal Compromise: access to detailed information about information about individuals of interest such as those with national security or defense related clearances will be favorite targets of malicious actors; the recent attack on the Office of Personnel Management is a foretaste of what is to come; by gaining access to information about individuals with highly sensitive clearances a foreign actor can position themselves to compromise, threaten or otherwise coerce specific individuals with clearances or people who are directly or indirectly related or associated with them;


Extortion. The Office of Personnel Management of the US Government was hacked by PRC hackers. The result was the capture of millions of profiles of US citizens with security clearances. Possession of the details of these individuals puts them at considerable risk. Risk factors include: knowing where they work and what programs they have access to, data on relatives, co-workers, detailed identification information suitable for creating false credentials.

Counter Intelligence specialists have over years identified four major reasons that motivate a person in a trusted position to betray their trust. These four reasons are summarized as MICE.

M: money I: ideology C: compromise E: ego

Foreign agencies are constantly on the lookout for targets of opportunity that can be be willing or unwittingly compromised. Once they have been identified it is then a matter of identifying a pathway to an encounter that would enable capture.



One of the biggest data breaches occurred in 2015. The Office of Personnel Management had an unknown amount of extremely sensitive information about all government employees with a security clearance. This breach can have consequences lasting for years or longer. In the diagram below a dense network of connection is evident. In most cases a given individual will have no idea of the other people who are in that network of connections. They may never encounter any of them or know any of them. The degrees of separation specify how many introductions are required in order to bring one individual in the network into direct or close if indirect contact with a target. Typically this will be five or often less.

The current reality of massive online databases detailing stunningly detailed information on nearly everyone alive within a nation means that the ability to capture this data and use it against the target nation is very great. With a deep learning system the risks eclipse those that have existed in the past. This obtains from the fact that it is now possible to create very detailed plans of action that would enable gaining access to a desired target individual. By using information captured from one or more of the major credit agencies then identifying and maneuvering a compromised individual becomes orders of magnitude easier than in the past.


SocialNetworks00.jpg


Possession of this type of information can enable an adversary to be highly selective in targeting prospective individual who might be susceptible to compromise, blackmail or being suborned otherwise. An attack vector could be via a direct path or could involve threatening or intimidating a family member. The possibilities are endless.




Molecular Modeling.

Tool or Weapon. A committed agency or group can use a tools such as CG4 to refine molecular models to accomplish specific purposes. For instance the developing field of polymer dendrimer molecules enable the possibility of creating molecular structures with heretofore unimagined capabilities. By way of summary, a dendrimer molecule is a specific type of molecule that consists of a series of layers. Structurally they loosely resemble an onion.

Dendrimer Molecules. Relatively recent developments in molecular design have brought to light molecules that can be layered. Dendrimer molecules can be used for a variety of purposes such as the creation of substances with very novel features. Surfactants can be constructed that offer hydrophobic behavior. Other dendrimer structures can be used for drug delivery. A keen observer will note that this technology can be used for both ethical, constructive purposes as well as non-ethical purposes. The range of potential uses is sufficiently broad that a catalog of possibilities would be very difficult to articulate.


Dendrimer03.jpg

Dendrimer molecules can be fabricated such that they resemble a layered object. In the abstract a dendrimer molecule bears some resemblance to an onion. Multiple layers can be generated such that a payload molecule can be embedded within the dendrimer molecule. A highly specific and concentrated molecular substance can be embedded between layers. The dendrimer molecule is therefore an excellent pharmaceutical transport mechanism. The range of possible uses is continuing to grow as new uses are identified for this developing technology

Because there can be many layers a dendrimer molecule can be assembled such that a range of different molecular payloads can be embedded and delivered; depending upon the requirements of the application these layers can be tuned to dissolve at predetermined rates and under known environmental conditions.

These layers or shells can be used to embed a "payload" of specific molecules. The shell or layer can be designed such that it will erode or dissolve in its intended environment after a predefined period of time.

This means that any imaginable combination of substances can be imbedded within the layers of a dendrimer molecule. These embedded substances can be either beneficial pharmaceuticals or they can be weaponized substances that can have powerful and profound physiological and or psychological effects.

Notice in the following diagram that one can see the progressive stages involved in constructing a dendrimer molecule; by stage three we can see how payload voids have become available; it then becomes possible to mount highly refined and specific molecules into these voids; depending upon the embedding layers we can determine how, when and under what conditions the payload will be released; by generation 4 one can recognize that a prior payload has voids available for other molecules;


As of July 2023 thirteen generation dendrimer molecules have been successfully fabricated.


Below we can see a more symbolic representation of how many different payload molecules can be imbedded within a dendrimer molecule; the result is that there is a very large range of possibilities;


Dendrimer04.png

Because just about any imaginable combination of molecular payloads can be carried by these delivery systems the possibilities are endless; and this likewise means that this means that this will prove to be a double edge sword; what must be clear from this development that a CG4 type tool can be put to dual use purposes;

The necessary corollary observation to this fact is that the range of risks can not be assessed; the reality is that this technology may prove to be the kind of "gift that keeps on giving";

Novel Psycho Actives: using dendrimer technology one can envision fabricating combinations of pharmaceutical substances for highly specific and focused effects; were an agency or group to decide to use a tools such as CG4 to design a novel molecular structure then it does no seem to be out of the realm of reality that the most sophisticated combinations of molecular structures could be designed and delivered to a target; because these are at molecular scale they could be made to be effectively undetectable; they could be made to react to various environmental conditions or activate based upon a time release scheme; further they can be made to use the same payloads but have these payloads released at varying intervals; the possibilities are limitless;

Targeted Bioweapons: the ability to synthesize and model new molecular structures will be hastened with tools such as CG4; the rival company Deep Mind recently supported the effort to arrive at a SARS COVID-19 vaccine; the company used its Deep Fold 2 system to screen millions of possible vaccine molecular structures; the result was that it arrived at a small set of viable candidate molecular structures in a matter of days; equally possible would be molecular structures that were capable of causing debilitating physiological or psychological functioning;


Dendrimer02.jpg


Carbon nanotubes. These are novel molecules with extremely regular lattice-like structures. They can be used to fabricate materials with novel properties. These properties can be targeted to result in materials of extremely high tensile strength, filtering capabilities and innumerable other specific applications.

  • Inorganic (materials, pharmaceuticals such as dendrimer, mono-filament molecules) such as:
    • Room Temperature Superconducting Materials: such a development would revolutionize societies in ways that cannot be fully characterized; another usage of such a capability might be in the fabrication of power storage capabilities; these forms of molecular combinations could result in storage batteries with power densities hundreds or thousands of times beyond those currently available; a battery the size of a loaf of bread might be capable of storing sufficient power to operate a standard home with all of its devices operating for days, weeks or longer;


Ctubes00.jpg

Extremely High Tensile Strength Materials: these might be derivatives of carbon nanotube material; but with much higher tensile strength; fibers made out of such material can be used as a saw blade; strands and weaves of such material could be used as a space elevator material; other uses might be in the use of nearly impervious shields such as bullet proof vests if woven into a fabric-like material and covered such that it did not endanger the wearer;

Organic (Biological) Modeling Capabilities (proteins, enzymes, hormones virus, bacteria, prions); the identification of molecular structures that enable the interdicting of metabolic failure can be envisaged; this could mean that new tools can emerge that to beyond the already remarkable CRISPR-CAS9 model and its derivatives; one can envision the creation of variants of molecular substances that mimic the hemoglobin molecule found in certain reptiles such as alligators or whales; these animals routinely demonstrate the ability to remain submerged for many minutes on end without resorting to returning to the surface to breathe;

Combined Novel Molecular Modeling Capabilities (substances, pharmaceuticals); these materials may be the result of combining organic and inorganic molecular structures to arrive at a result with heretofore novel and unexpected properties and capabilities;



Novel Protein Design. Recent developments in using deep learning systems has been the emergence of protein designs that are 'made to order'. These are protein structures whose properties a protein designer can specify. Within minutes the design software, known as RFdiffusion is able to offer molecular structures for review. It is now available as an open source software tool.

It is not far fetched to consider that this tool can be used for purposes that might have been considered science fiction just a few years ago. A case in point might be using a variant of this RFDiffusion tool to devise a variation on the human hemoglobin molecule such that it has substantially greater oxygen retention capacity. Mammals such as dolphins and whales might reveal ways in which their hemoglobin might be adapted for human purposes.


RFDiffusion.jpg

A great deal of progress has been recorded in the area of the field of genomic manipulation as a result of the development and refinement of what are called CRISPR-CAS9 editing tools. These are molecular level tools that are capable of performing very precise editing of the DNA molecule. CRISPR-CAS9 and its derivatives such as CRISPR-CAS13 allow for the snipping out of highly specific sequences of lengths of the DNA molecule and replacement with a desired length. This means that hereditary problems such as Tay-Sachs, Cystic fibrosis or cycle cell anemia can now be treated.

In other uses it is now possible to genetically splice traits from one species into the DNA of another. In recent years progress has shown that the enzyme known as luciferase can be spliced from firefly DNA into the DNA segment responsible for skin coloration. The result is that one can now have animals that glow in the dark.




Social Engineering. Our perception is that unexpected and novel social developments and processes can be set in motion and managed over time. A catchall heading for these kinds of endeavors might be the category of "social engineering" for lack of a better way to identify a catch-all. Social engineering might result in emitting messages within a social sphere with the intent of motivating and activating various groups or collections of people; in this case the individuals themselves might or might not even realize that they are being manipulated.

A CG4 category tool can be used to create models of social processes; these processes can then be characterized in terms of how various groups respond to select social messages and signals.

For some social groups there are "hot button" issues that will motivate reactions ranging from peaceful demonstrations to violent protest reactions. The more finely tuned the model the greater control can that can be exerted to induce or provoke actions, reactions or interactions. In a broader context the same ability to understand how various processes advance means that industry models can be defined, articulated, modeled and studied for heretofore unsuspected linkages and sensitivities.


Industry Models: targeted industry segment analysis – identification of bottlenecks, weak links, possible disruption points;


BizProcess03.jpg

Using CG4 it becomes possible to model a business process in arbitrary detail. This suggests that it is possible to create models of very fine granular detail. With the appropriate control mechanisms one can study the effects of internal or external events. Such as tool would enable deep understanding about the factors that adversely or positively impact that particular process. Such a capability can be disruptive depending upon how such insight is put to use.

Exploratory Analysis. Existing modeling tools have reached a level of sophistication that major government organizations, universities and think tanks have incorporated these kinds of tools into their bag of tricks. One can envision using a powerful tool such as CG4 to model the processes of a major geopolitical development. Recent news reports (as of June 2023) offer strong indications that the US and the PRC may be heading toward some form of confrontation in the South China Sea littoral. In at one instance a major think tank known as CSIS reported their results of an exploration of events involving a PRC invasion of the island of Taiwan.

According to various reports the results varied from just tolerable to remarkably bad. A tool such as CG4 can clearly be used to model in arbitrary detail the processes that involve multiple agents, a variety of resources and any number of uncertainties, potential bottle necks and other factors that can predispose events to progress in one direction rather than another.

Process Modeling: Social, Economic, Political, Geopolitical: selectively focus on global areas of interest; the objective being the creation of tools that enable the operator to “drive” a line of analysis or discourse forward based upon real world limitations, resources, historical realities and current political imperatives; an extension to Caspian Report

Geopolitical03.jpg

Boundaries Exploration: these might emerge as compelling social, economic, political policy proposals grounded in common sense; possible ways to solve older, existing problems using recent insights into the mechanics, linkages and dynamics of observable processes;

New Value Propositions: near term job market realignment, disruption; (increased social dislocation, disruption);

Locus of Interest: Emergence of position nexus ecology; crystallization of political polarization; these might be further developments of existing “channels” currently available on youtube.com; but would operate independently of that platform, but become accessible via a “white pages” type structure;

Food Chain: The emergence of specialist groups dedicated to supporting various actors in the nexus ecology; these will follow existing business development lines with market segmentation and brand identification; we should expect to see emerging markets with offerings that are priced as: high, best, low and niche;

Because of the novelty of these new technologies we should also expect to see the emergence of a set of market places that reflect those found in most commercial settings; this means that there will be;


Market Positions by Price - High, Niche, Best, Low: We should expect to see a rapidly developing market place for new value propositions. These will involve the exchange for ideas, capabilities and services. This marketplace will probably evolve rapidly and shadow the development of the software market place. Initially when there were very few software vendors and the marketplace was perceived to be small then prices for individual software items was substantial. A spreadsheet tool such as Lotus 1-2-3 ran in the hundreds of US dollars. As the marketplace grew prices came down. As perceptions of the size of the marketplace sharpened new products and service providers appeared and the prices gradually fell. We should expect to see a comparable shakeout in the emerging market place of cognitive "fittings", "couplers" and other forms of connectivity.

MarketPriceMap.jpg

Open markets (white market) These will be openly and easily accessible and provide buyers and sellers a readily accessible location to enact their exchanges.

What may develop will be a marketplace like any other open, above board marketplace of buyers and sellers. These can be found scattered all over any given major web paged. They often involve being obliged to see and respond to a pop up add in order to view the desired content.

What will also shadow this open marketplace will be gray and black market places wherein items are available for exchange that have not yet received full sanction of the host society.


Uncharacterized markets (gray market). These can be expected to be venues in which are in unregulated venues; they might be located geographically anywhere on the planet;

Non-sanctioned markets (black market). we should expect that these venues will function as they always have; unregulated and very much caveat emptor;

Some Talking Points. Following are a few talking point topics that might serve as a point of entre into the discussion of what kinds of risks CG4 and its variants might pose. We recognize that risks might manifest from malicious actors, systemically and organically or, by way of speculation, using our insight and knowledge about how earlier technologies required regulation and management. We recognize that control of these new technologies may be required insofar as the benefit that they offer might outweigh the downsides of their use. As in prior technologies there may be the need to demand licensing, registration or other forms of regulation. In the meantime we recognize the reality that human nature has shown itself to be immutable across the span of written history. Therefore we should expect that even if some form of regulation or licensing emerges with this technology there will always be so-called "black markets". The talking points that follow defer discussions of moral imperatives but instead focus upon the possible, knowing what we know about the realities of human behavior. They therefore serve only as a means to spotlight the more obvious uses that this emerging technology might come to light.

Problem Characteristics. (these need a) a sanity-check b) another consistency pass, find the center of gravity and redistribute focus accordingly);

Perceptions.{Provocations False-Flag Misdirection Compromise }

Beliefs.The major western societies have belatedly discovered that managing perceptions and beliefs has become a major problem. The arrival of broadly accessible social media have created communications environments that can serve up the full range of audio and video content.

And this can all be done with or without any prior vetting, verification or editing; recent developments with tools such as CG4, Dall-E, and MidJourney have enabled the creation of remarkably convincing reports, documentaries and images; which in all cases can be made almost indistinguishable from reality; this trend will continue to refine to the point that it will require very special and powerful tools to decipher fact from fiction; the more sophisticated creation tools will simply lengthen the time required to correct public perceptions and beliefs about what is or is not true.

This will prove to have created an environment in which risks to societies in terms of disruption, dissention and violence will be escalated;

These tools will presently arrive at a state wherein a small group of dedicated and competent individuals will be able to create content that will rival any evening news report; which can set in motion social movements that the responsible civil authorities will find challenging to diffuse. This situation has already become the new norm. This can easily be recognized by reviewing how current events political narratives are presented; it is no longer surprising to encounter dozens of "news" reports with the most remarkably inflammatory tag lines or claims; going forward the sophistication that political and social messaging will reach the point that whole new communities will crystallize; currently much of the fare that is viewable caters to communities of interest; going forward elements of these communities will coalesce into communities of action - with the result that actual "facts on the ground" will shift in possibly sudden and unexpected ways;

Extortion. The Office of Personnel Management breach in 2014 signaled the fact that a broad swathe of individuals who operate in extremely sensitive roles can be placed at risk overnight; the severity of this breach can not be overstated because of the fact that in almost all cases the individual who have been identified have had their personal identifying features revealed for the whole planet to peruse; a hostile actor can now collect all of this information, analyze it and create mapping information that reveal associations, travel patterns, chain of command and any number of other revealing insights; any and all of these can then be used as leverage against any of these individuals;

Nano-Scale Fabrication. The ability to fabricate extremely novel pharmaceuticals is palpable. Given that there are tools available for the creation of molecular structures with remarkable and novel features, traits and characteristics means that the range of possible uses can not be foreseen. The inherent risks associated with the creation of heretofore unheard of or even unimagined materials and drugs can not be underestimated. We should expect to see materials with strengths that rival or exceed those found in nature, a prime example is spider's silk; which is known to be multiple times stronger than steel and far less brittle;

The availability of polymeric molecules such as dendrimers means that a facility with the requisite tools and skills will be able to turn out on-demand ethical drugs that can only be guessed at; were an actor or agency wish, pharmaceutical substances can be fabricated wherein their effects can be modulated - to successively be more or less intense for durations that only the designer can specify; this means that powerful mood and perception altering psycho-actives can be fabricated and delivered using means that are untraceable and extremely surreptitious;

By way of example, one can envision a dendrimer molecule, possibly a set of these being released into a religious gathering; by way of illustration, suppose that a powerful psychological disinhibiter were to be embedded within a low generation (six layers for instance) multiple layers could contain concentrations of this disinhibiter; each layer could be designed to have a solubility quotient whereby it might dissolve either more quickly or more slowly.

Individuals subjected to airborne dosages of this psychoactive could find themselves experiencing waves of mental relaxation; any suggestive external stimuli might add to the effect such that verbal suggestions, or possibly visual imagery could be sufficient to induce behavior in corresponding to that stimuli;

Current neuro-anatomy mapping suggests that this technology can be tailored to act upon highly specific cortical regions; add in the possibility of delayed release of successive psycho-actives and we can be faced with situations wherein substantial numbers of individual can be induced into unexpected and even possibly uncontrollable personal behaviors.

Analytical Modeling.

  • Frequency. {Intermittent (cyclical acyclical). Persistent}
  • Impact Severity {Inconvenience Interruption Restructuring/Reorganization }
  • Severity. {Recoverable, Nonrecoverable-Nonterminal Nonrecoverable-Terminal}
  • Personal {None Momentary Persistent Chronic Death}
  • Scope {Individual Group Industrial Subsector Local Regional National Global}
  • Opportunity/Risk Cost {Minimal (One-Time-Fix Repetitive) Significant (One-Time Repetitive) High (One-Time-Fix Repetitive) Insurmountable}
  • (Prevention Repair Status Quo)
Talking Points
Seq# Category Frequency Severity Personal Scope Prevention Repair Status_Quo
1 Perceptions Low Intermittent None None High High High
2 Messaging Low Intermittent None None High High High
3 Script Writing Low Intermittent None None High High High
4 Extortion Intermittent High Severe Broad High High High
5 Molecular-Materials Low Intermittent None None High High High
5a Dendrimer Molecules High Severe Severe Broad Medium to High None High
5b Psycho-Actives High Severe Severe Broad Medium to High None High
7 Process Modeling Low Intermittent None None High High High