Difference between revisions of "Pi is transcendental"
(moved the calculations to the references to make it more readable) |
(completed the proof) |
||
(One intermediate revision by the same user not shown) | |||
Line 6: | Line 6: | ||
The proof shown here is not the original proof by Lindemann but a later proof by David Hilbert which is a bit more accessible. | The proof shown here is not the original proof by Lindemann but a later proof by David Hilbert which is a bit more accessible. | ||
====Preparation==== | |||
Suppose <math>\pi</math> is algebraic. | Suppose <math>\pi</math> is algebraic. | ||
Set <math>\alpha_{1}=i\pi</math> | Set <math>\alpha_{1}=i\pi</math> | ||
where <math>i</math> is the imaginary unit <math> | where <math>i</math> is the imaginary unit <ref><math>i^2=-1</math></ref>. | ||
Then <math>\alpha_{1}</math> is also algebraic, so it is the root of an | Then <math>\alpha_{1}</math> is also algebraic, so it is the root of an | ||
<math>n</math>-th degree polynomial with integer coefficients. | <math>n</math>-th degree polynomial with integer coefficients. | ||
Let <math>\alpha_{2}\text{, . . . , }\alpha_{n}</math> be the other roots of this polynomial. | Let <math>\alpha_{2}\text{, . . . , }\alpha_{n}</math> be the other roots of this polynomial. | ||
Since <math>1+e^{i\pi}=0</math> | Since <math>1+e^{i\pi}=0</math> <ref>Euler's identity</ref> we have | ||
<math>(1+e^{\alpha_{1}})(1+e^{\alpha_{2}})\text{ . . . }(1+e^{\alpha_{n}})=1+e^{\beta_{1}}+e^{\beta_{2}}+\text{ . . . }+e^{\beta_{N}}=0</math> | <math>(1+e^{\alpha_{1}})(1+e^{\alpha_{2}})\text{ . . . }(1+e^{\alpha_{n}})=1+e^{\beta_{1}}+e^{\beta_{2}}+\text{ . . . }+e^{\beta_{N}}=0</math> | ||
for some <math>\beta_{1}\text{, . . . , }\beta_{N}</math>. | for some <math>\beta_{1}\text{, . . . , }\beta_{N}</math>. | ||
Line 25: | Line 26: | ||
and because no <math>\beta_i</math> is equal to zero <math>b_M\neq 0</math> also. | and because no <math>\beta_i</math> is equal to zero <math>b_M\neq 0</math> also. | ||
=== | ====Split==== | ||
First we will multiply our equation with the integral <math>\int_0^{\infty}z^{\rho}\left[ | First we will multiply our equation with the integral | ||
where <math>\rho</math> is some positive integer. | <math> | ||
\int_0^{\infty}z^{\rho}\left[g(z)\right]^{\rho + 1}e^{-z}dz | |||
</math> | |||
<ref> | |||
This is a modified Version of an alternative formula for the factorial: | |||
<math>n!=\int_0^{\infty}z^{n}e^{-z}dz</math>. | |||
We can use this formula as a "bridge" between the exponential function and the integers. | |||
</ref>, | |||
where <math>\rho</math> is some positive integer and <math>g(z)=f(z)\cdot b^M </math>. | |||
We will write <math>\int_0^{\infty}</math> as a shorthand. | We will write <math>\int_0^{\infty}</math> as a shorthand. | ||
This allows us to split the sum into two Parts: | This allows us to split the sum into two Parts: | ||
<ref> | |||
Where <math>\int_0^{\beta_i}</math> is a line integral along the line segment from <math>0</math> to <math>\beta_i</math> in the complex plane, | |||
and <math>\int_{\beta_i}^{\infty}</math> is also a line integral | |||
obtained by integrating over the line from <math>\beta_i</math> to <math>\infty</math> parallel to the | |||
real axis in the complex plane. | |||
If <math>\beta_i</math> is a real number this just boils down to splitting the interval of integration. | |||
But if <math>\beta_i</math> is a non-real complex number Cauchy's integral theorem has to be utilised | |||
to show that integrating along these different paths gives the same result. | |||
</ref> | |||
:<math>P_1 = a\int_0^{\infty} +\text{ } e^{\beta_1}\int_{\beta_1}^{\infty} + \text{ . . . } + e^{\beta_M}\int_{\beta_M}^{\infty}</math> | :<math>P_1 = a\int_0^{\infty} +\text{ } e^{\beta_1}\int_{\beta_1}^{\infty} + \text{ . . . } + e^{\beta_M}\int_{\beta_M}^{\infty}</math> | ||
:<math>P_2 = 0 + e^{\beta_1}\int_0^{\beta_1} + \text{ . . . } + e^{\beta_M}\int_0^{\beta_M}</math> | :<math>P_2 = 0 + e^{\beta_1}\int_0^{\beta_1} + \text{ . . . } + e^{\beta_M}\int_0^{\beta_M}</math> | ||
====First Sum, First Term==== | |||
Then, one can show that | |||
<math> | |||
\int_0^{\infty} | |||
=\int_0^{\infty}z^{\rho}\left[g(z)\right]^{\rho + 1}e^{-z}dz | |||
</math> | |||
is an integer that is divisible by <math>\rho!</math> by expanding | |||
<math> | |||
\left[g(z)\right]^{\rho+1}=\left[f(z)b^M\right]^{\rho + 1} | |||
</math> | |||
to an (integer) polynomial and then using the fact that | |||
<math> | |||
n!=\int_0^{\infty}z^{n}e^{-z}dz | |||
</math> | |||
for positive integers <math>n</math> to get rid of the <math>e</math>-terms and integrals. | |||
<math> | |||
to an integer polynomial and then using the fact that <math>\int_0^{\infty}z^{ | |||
<ref> | <ref> | ||
<math> | |||
\int_0^{\infty}z^{\rho}\left[f(z)b^M\right]^{\rho + 1}e^{-z}dz | |||
=b^{M\left(\rho+1\right)}\int_0^{\infty}\left(cz^{M\rho+M}+\text{ . . . }+c_{M\rho+M}\right)z^{\rho}e^{-z}dz | |||
where the <math>c_i</math> are integers; if <math>f</math> is a polynomial with integer coefficients so is <math>f^{\rho+1}</math>. | = b^{M\left(\rho+1\right)}\left(c\left(M\rho+M+\rho\right)!+\text{ . . . }+c_{M\rho+M}\rho!\right) | ||
=b^{M\rho+M}\rho!\left(c\frac{\left(M\rho+M+\rho\right)!}{\rho!}+\text{ . . . }+c_{M\rho+M}\right) | |||
</math> | |||
where the <math>c_i</math> are integers; if <math>f</math> is a polynomial with integer coefficients so is <math>f^{\rho+1}</math>. | |||
Note that the fractions | |||
<math> | |||
\frac{\left(\rho+k\right)!}{\rho!} | |||
</math> | |||
are also integers. | |||
</ref> | </ref> | ||
More specifically, if divided by <math>(\rho+1)</math>, one | More specifically, if divided by <math>(\rho+1)</math>, one gets the remainder | ||
<math> | |||
b^{\left(M\rho+M\right)}\cdot b_M^{\left(\rho+1\right)}\cdot\rho! | |||
</math>. | |||
<ref> | <ref> | ||
Note that in the parentheses above every term is divisible by <math>(\rho+1)</math> except the last one <math>c_{M\rho+M}</math>. | Note that in the parentheses above every term is divisible by <math>(\rho+1)</math> except the last one <math>c_{M\rho+M}</math>. | ||
Hence, modulo <math>(\rho+1)</math> we have the congruence <math>\int_0^{\infty}\equiv b^{M\rho+M}\rho! | Hence, modulo <math>(\rho+1)</math> we have the congruence | ||
<math> | |||
\int_0^{\infty}\equiv b^{M\rho+M}\rho! c_{M\rho+M}\equiv b^{M\rho+M}\rho! b_M^{\rho+1} | |||
</math> | |||
</ref> | </ref> | ||
=== | ====First Sum, Other Terms==== | ||
Something slightly weaker can be shown for the terms <math>e^{\beta_i}\int_{\beta_i}^{\infty}=e^{\beta_i}\int_{\beta_i}^{\infty}z^{\rho}\left[ | Something slightly weaker can be shown for the terms | ||
Using the substitution <math>\omega = z+\beta_i</math> we can set the bounds of integration to <math>0</math> and <math>\infty</math>, | <math> | ||
e^{\beta_i}\int_{\beta_i}^{\infty} | |||
=e^{\beta_i}\int_{\beta_i}^{\infty}z^{\rho}\left[g(z)\right]^{\rho + 1}e^{-z}dz | |||
</math>. | |||
Using the substitution | |||
<math> | |||
\omega = z+\beta_i | |||
</math> | |||
we can set the bounds of integration to <math>0</math> and <math>\infty</math>, | |||
<ref> | <ref> | ||
<math> | |||
e^{\beta_i}\int_{\beta_i}^{\infty}z^{\rho}\left[f(z)b^M\right]^{\rho + 1}e^{-z}dz | |||
= e^{\beta_i}\int_0^{\infty}\left(\omega+\beta_i\right)^{\rho}\left[f\left(\omega+\beta_i\right)b^M\right]^{\rho + 1}e^{-\omega-\beta_i}d\omega | |||
= \int_0^{\infty}\left(\omega+\beta_i\right)^{\rho}\left[f\left(\omega+\beta_i\right)b^M\right]^{\rho + 1}e^{-\omega}d\omega | |||
</math> | |||
</ref> | </ref> | ||
and then perform some similar algebraic manipulations so that we can use <math>\int_0^{\infty}z^{ | and then perform some similar algebraic manipulations so that we can use | ||
<math> | |||
n!=\int_0^{\infty}z^{n}e^{-z}dz | |||
</math> | |||
again, | |||
<ref> | <ref> | ||
We can expand the first factor using the binomial theorem | We can expand the first factor using the binomial theorem | ||
<math> | |||
<math>\int_0^{\infty}\left(\omega+\beta_i\right)^{\rho}\left[f\left(\omega+\beta_i\right)b^M\right]^{\rho + 1}e^{-\omega}d\omega = b^{M\rho+M}\int_0^{\infty}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\omega^k\beta_i^{\rho-k}\left[f\left(\omega+\beta_i\right)\right]^{\rho + 1}e^{-\omega}d\omega = b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\int_0^{\infty}\omega^k\left[f\left(\omega+\beta_i\right)\right]^{\rho + 1}e^{-\omega}d\omega</math> | \int_0^{\infty}\left(\omega+\beta_i\right)^{\rho}\left[f\left(\omega+\beta_i\right)b^M\right]^{\rho + 1}e^{-\omega}d\omega | ||
= b^{M\rho+M}\int_0^{\infty}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\omega^k\beta_i^{\rho-k}\left[f\left(\omega+\beta_i\right)\right]^{\rho + 1}e^{-\omega}d\omega | |||
= b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\int_0^{\infty}\omega^k\left[f\left(\omega+\beta_i\right)\right]^{\rho + 1}e^{-\omega}d\omega | |||
</math> | |||
The expression <math>f(\omega+\beta_i)</math> will again be some kind of <math>M</math>-th degree polynomial. But because the polynomial is zero for <math>\omega = 0</math> we know that the last coefficient is also equal to zero. | : The expression <math>f(\omega+\beta_i)</math> will again be some kind of <math>M</math>-th degree polynomial. But because the polynomial is zero for <math>\omega = 0</math> we know that the last coefficient is also equal to zero. | ||
<math>b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\int_0^{\infty}\omega^k\left[f\left(\omega+\beta_i\right)\right]^{\rho + 1}e^{-\omega}d\omega = b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\int_0^{\infty}\left[b(\omega+\beta_i)^M + \text{ . . . }+b_M\right]^{\rho + 1}\omega^k e^{-\omega}d\omega = b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\int_0^{\infty}\left[l\omega^M + \text{ . . . }+\omega l_{M-1}\right]^{\rho + 1}\omega^k e^{-\omega}d\omega </math> | <math> | ||
b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\int_0^{\infty}\omega^k\left[f\left(\omega+\beta_i\right)\right]^{\rho + 1}e^{-\omega}d\omega | |||
= b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\int_0^{\infty}\left[b(\omega+\beta_i)^M + \text{ . . . }+b_M\right]^{\rho + 1}\omega^k e^{-\omega}d\omega | |||
= b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\int_0^{\infty}\left[l\omega^M + \text{ . . . }+\omega l_{M-1}\right]^{\rho + 1}\omega^k e^{-\omega}d\omega | |||
</math> | |||
So, raised to the <math>\rho+1</math>-th power we get a polynomial again, but with the last <math>\rho</math> coefficients equal to zero. | : So, raised to the <math>\rho+1</math>-th power we get a polynomial again, but with the last <math>\rho</math> coefficients equal to zero. | ||
<math>b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\int_0^{\infty}\left[l\omega^M + \text{ . . . }+\omega l_{M-1}\right]^{\rho + 1}\omega^k e^{-\omega}d\omega = b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\int_0^{\infty}\left(l'\omega^{M\rho+M} + \text{ . . . }+\omega^{\rho+1} l'_{M(\rho+1)-\rho -1}\right)\omega^k e^{-\omega}d\omega </math> | <math> | ||
b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\int_0^{\infty}\left[l\omega^M + \text{ . . . }+\omega l_{M-1}\right]^{\rho + 1}\omega^k e^{-\omega}d\omega | |||
= b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\int_0^{\infty}\left(l'\omega^{M\rho+M} + \text{ . . . }+\omega^{\rho+1} l'_{M(\rho+1)-\rho -1}\right)\omega^k e^{-\omega}d\omega | |||
</math> | |||
We can "distribute" the integral into the sum | : We can "distribute" the integral into the sum | ||
<math>b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\int_0^{\infty}\left(l'\omega^{M\rho+M} + \text{ . . . }+\omega^{\rho+1} l'_{M(\rho+1)-\rho -1}\right)\omega^k e^{-\omega}d\omega = b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\left(l'\int_0^{\infty}\omega^{M\rho+M}\omega^k e^{-\omega}d\omega + \text{ . . . }+l'_{M(\rho+1)-\rho -1}\int_0^{\infty}\omega^{\rho+1}\omega^k e^{-\omega}d\omega\right)</math> | <math> | ||
b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\int_0^{\infty}\left(l'\omega^{M\rho+M} + \text{ . . . }+\omega^{\rho+1} l'_{M(\rho+1)-\rho -1}\right)\omega^k e^{-\omega}d\omega | |||
= b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\left(l'\int_0^{\infty}\omega^{M\rho+M}\omega^k e^{-\omega}d\omega + \text{ . . . }+l'_{M(\rho+1)-\rho -1}\int_0^{\infty}\omega^{\rho+1}\omega^k e^{-\omega}d\omega\right) | |||
</math> | |||
As above we can now use the fact that <math>\int_0^{\infty}\omega^{\rho}e^{-\omega}d\omega = \rho!</math> to get rid of the integrals; the expression becomes | : As above we can now use the fact that <math>\int_0^{\infty}\omega^{\rho}e^{-\omega}d\omega = \rho!</math> to get rid of the integrals; the expression becomes | ||
<math>b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\left(l'\left(M\rho+M+k\right)! + \text{ . . . }+l'_{M(\rho+1)-\rho -1}\left(\rho+1+k\right)!\right) = b^{M\rho+M}\left(\rho+1\right)!\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\left(l'\frac{\left(M\rho+M+k\right)!}{\left(\rho+1\right)!} + \text{ . . . }+l'_{M(\rho+1)-\rho -1}\frac{\left(\rho+1+k\right)!}{\left(\rho+1\right)!}\right) = \left(\rho+1\right)!\cdot G\left(\beta_i\right)</math> | <math> | ||
b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\left(l'\left(M\rho+M+k\right)! + \text{ . . . }+l'_{M(\rho+1)-\rho -1}\left(\rho+1+k\right)!\right) | |||
= b^{M\rho+M}\left(\rho+1\right)!\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\left(l'\frac{\left(M\rho+M+k\right)!}{\left(\rho+1\right)!} + \text{ . . . }+l'_{M(\rho+1)-\rho -1}\frac{\left(\rho+1+k\right)!}{\left(\rho+1\right)!}\right) | |||
= \left(\rho+1\right)!\cdot G\left(\beta_i\right) | |||
</math> | |||
where <math>G(\beta_i)</math> is a polynomial in <math>\beta_i</math> with integer coefficients. | : where <math>G(\beta_i)</math> is a polynomial in <math>\beta_i</math> with integer coefficients. | ||
</ref> | </ref> | ||
which tells us that the integral is equal to | which tells us that the integral is equal to | ||
<math>\left(\rho+1\right)! | <math> | ||
\left(\rho+1\right)! G\left(\beta_i\right) | |||
</math>, | |||
where <math>G(\beta_i)</math> is a polynomial in <math>\beta_i</math> with integer coefficients. | where <math>G(\beta_i)</math> is a polynomial in <math>\beta_i</math> with integer coefficients. | ||
=== | Even though the <math>\beta_i</math> are themselves no integers, | ||
... | since they are the roots of the integer polynomial <math>f</math> | ||
we get an integer again if we sum them all up. | |||
Likewise, the sums of the squares, third powers etc. are all integers aswell. | |||
<ref> | |||
See Newton-Girard Formulas | |||
</ref> | |||
So, even though the <math>G(\beta_i)</math> are no integers, the sum | |||
<math> | |||
G(\beta_1)+G(\beta_2)+\text{ . . . }+G(\beta_M) | |||
</math> | |||
is. | |||
So we can bundle all terms of the first sum, except the first, together to get an integer, that is furthermore divisible by <math>\left(\rho +1\right)!</math>. | |||
On the whole we have thus shown that <math>P_1</math> is an integer that is divisible by <math>\rho !</math>. | |||
That means <math>\frac{P_1}{\rho !}</math> is also an integer, and dividing it by <math>\rho + 1</math> would give one the remainder | |||
<math> | |||
b^{\left(M\rho+M\right)}\cdot b_M^{\left(\rho+1\right)} | |||
</math>. | |||
(This is just important to make sure that <math>P_1</math> is not always equal to zero.) | |||
====Second Sum==== | |||
For the terms in the second sum we just calculate upper bounds. | |||
Let <math>K</math> be the maximum (absolute) value of <math>z\cdot g(z)</math> on all the line segments <math>\left[0;\beta_i\right]</math> | |||
and <math>k</math> the maximum (absolute) value of <math>g(z)\cdot e^{-z}</math> also on these line segments. Then: | |||
:<math>\left|\int_0^{\beta_i}\right|\leq \left|\beta_i\right|\cdot k \cdot K^{\rho}</math> | |||
So, if we abbreviate | |||
<math> | |||
\kappa =\left(\left|\beta_1\cdot e^{\beta_1}\right| | |||
+\left|\beta_2\cdot e^{\beta_2}\right| | |||
+\text{ . . . } | |||
+\left|\beta_M\cdot e^{\beta_M}\right| | |||
\right)\cdot k | |||
</math> | |||
we simply get | |||
:<math>\left|P_2\right|\leq\kappa\cdot K^{\rho}</math>. | |||
Note that neither <math>\kappa</math> nor <math>K</math> depend on <math>\rho</math>. | |||
====Conclusion==== | |||
Now we come back to our original equation | |||
<math> | |||
P_1+P_2=0 | |||
</math>. | |||
By dividing with <math>\rho !</math> on both sides we get | |||
:<math>\frac{P_1}{\rho !}+\frac{P_2}{\rho !}=0</math> | |||
Remember that <math>\rho </math> was an arbitrary positive integer. | |||
According to the inequality we proved for <math>P_2</math> we can get <math>\frac{P_2}{\rho !}</math> | |||
as close to zero as we want if we choose <math>\rho </math> large enough. | |||
But we also proved that <math>\frac{P_1}{\rho !}</math> is always an integer, and there are infinitely many choices | |||
<ref> | |||
multiples of <math>a\cdot b\cdot b_M</math> | |||
</ref> | |||
for <math>\rho</math> such that | |||
<math>\frac{P_1}{\rho !}</math> is not divisible by <math>\rho + 1</math> so it can't be zero. | |||
One can easily see that this equation can't hold. | |||
Therefore our initial premise was faulty and <math>\pi</math> is transcendent. | |||
{{Claim | {{Claim |
Latest revision as of 22:09, 8 February 2022
Pi is transcendental is a famous claim regarding the nature of the number [math]\displaystyle{ \pi }[/math]. It was first proven by Ferdinand von Lindemann in 1882, buildung on methods developed by Charles Hermite, who was able to prove that the number [math]\displaystyle{ e }[/math] is transcendental roughly 10 years earlier in 1873. With the help of Karl Weierstrass their findings could be generalized to the Lindemann-Weierstrass theorem in 1885.
Proof
The proof shown here is not the original proof by Lindemann but a later proof by David Hilbert which is a bit more accessible.
Preparation
Suppose [math]\displaystyle{ \pi }[/math] is algebraic. Set [math]\displaystyle{ \alpha_{1}=i\pi }[/math] where [math]\displaystyle{ i }[/math] is the imaginary unit [1]. Then [math]\displaystyle{ \alpha_{1} }[/math] is also algebraic, so it is the root of an [math]\displaystyle{ n }[/math]-th degree polynomial with integer coefficients. Let [math]\displaystyle{ \alpha_{2}\text{, . . . , }\alpha_{n} }[/math] be the other roots of this polynomial.
Since [math]\displaystyle{ 1+e^{i\pi}=0 }[/math] [2] we have [math]\displaystyle{ (1+e^{\alpha_{1}})(1+e^{\alpha_{2}})\text{ . . . }(1+e^{\alpha_{n}})=1+e^{\beta_{1}}+e^{\beta_{2}}+\text{ . . . }+e^{\beta_{N}}=0 }[/math] for some [math]\displaystyle{ \beta_{1}\text{, . . . , }\beta_{N} }[/math]. These [math]\displaystyle{ \beta_i }[/math] are also algebraic, since they are the sums of other algebraic numbers (the [math]\displaystyle{ \alpha_i }[/math]). Disregarding the [math]\displaystyle{ \beta_{i} }[/math] that are equal to [math]\displaystyle{ 0 }[/math], we end up with [math]\displaystyle{ a+e^{\beta_{1}}+e^{\beta_{2}}+\text{ . . . }+e^{\beta_{M}}=0 }[/math] for some positive integer [math]\displaystyle{ a }[/math] (since [math]\displaystyle{ e^0=1 }[/math]). Because the [math]\displaystyle{ \beta_1\text{, . . . , }\beta_M }[/math] are algebraic, they are the roots of a polynomial [math]\displaystyle{ f(z)=b z^M+ b_1 z^{M-1}+\text{ . . . }+b_{M-1} z + b_M }[/math] with integer coefficients [math]\displaystyle{ b\text{, }b_1\text{, . . . , }b_M }[/math], and because no [math]\displaystyle{ \beta_i }[/math] is equal to zero [math]\displaystyle{ b_M\neq 0 }[/math] also.
Split
First we will multiply our equation with the integral [math]\displaystyle{ \int_0^{\infty}z^{\rho}\left[g(z)\right]^{\rho + 1}e^{-z}dz }[/math] [3], where [math]\displaystyle{ \rho }[/math] is some positive integer and [math]\displaystyle{ g(z)=f(z)\cdot b^M }[/math]. We will write [math]\displaystyle{ \int_0^{\infty} }[/math] as a shorthand. This allows us to split the sum into two Parts: [4]
- [math]\displaystyle{ P_1 = a\int_0^{\infty} +\text{ } e^{\beta_1}\int_{\beta_1}^{\infty} + \text{ . . . } + e^{\beta_M}\int_{\beta_M}^{\infty} }[/math]
- [math]\displaystyle{ P_2 = 0 + e^{\beta_1}\int_0^{\beta_1} + \text{ . . . } + e^{\beta_M}\int_0^{\beta_M} }[/math]
First Sum, First Term
Then, one can show that [math]\displaystyle{ \int_0^{\infty} =\int_0^{\infty}z^{\rho}\left[g(z)\right]^{\rho + 1}e^{-z}dz }[/math] is an integer that is divisible by [math]\displaystyle{ \rho! }[/math] by expanding [math]\displaystyle{ \left[g(z)\right]^{\rho+1}=\left[f(z)b^M\right]^{\rho + 1} }[/math] to an (integer) polynomial and then using the fact that [math]\displaystyle{ n!=\int_0^{\infty}z^{n}e^{-z}dz }[/math] for positive integers [math]\displaystyle{ n }[/math] to get rid of the [math]\displaystyle{ e }[/math]-terms and integrals. [5]
More specifically, if divided by [math]\displaystyle{ (\rho+1) }[/math], one gets the remainder [math]\displaystyle{ b^{\left(M\rho+M\right)}\cdot b_M^{\left(\rho+1\right)}\cdot\rho! }[/math]. [6]
First Sum, Other Terms
Something slightly weaker can be shown for the terms [math]\displaystyle{ e^{\beta_i}\int_{\beta_i}^{\infty} =e^{\beta_i}\int_{\beta_i}^{\infty}z^{\rho}\left[g(z)\right]^{\rho + 1}e^{-z}dz }[/math]. Using the substitution [math]\displaystyle{ \omega = z+\beta_i }[/math] we can set the bounds of integration to [math]\displaystyle{ 0 }[/math] and [math]\displaystyle{ \infty }[/math], [7] and then perform some similar algebraic manipulations so that we can use [math]\displaystyle{ n!=\int_0^{\infty}z^{n}e^{-z}dz }[/math] again, [8] which tells us that the integral is equal to [math]\displaystyle{ \left(\rho+1\right)! G\left(\beta_i\right) }[/math], where [math]\displaystyle{ G(\beta_i) }[/math] is a polynomial in [math]\displaystyle{ \beta_i }[/math] with integer coefficients.
Even though the [math]\displaystyle{ \beta_i }[/math] are themselves no integers, since they are the roots of the integer polynomial [math]\displaystyle{ f }[/math] we get an integer again if we sum them all up. Likewise, the sums of the squares, third powers etc. are all integers aswell. [9] So, even though the [math]\displaystyle{ G(\beta_i) }[/math] are no integers, the sum [math]\displaystyle{ G(\beta_1)+G(\beta_2)+\text{ . . . }+G(\beta_M) }[/math] is.
So we can bundle all terms of the first sum, except the first, together to get an integer, that is furthermore divisible by [math]\displaystyle{ \left(\rho +1\right)! }[/math].
On the whole we have thus shown that [math]\displaystyle{ P_1 }[/math] is an integer that is divisible by [math]\displaystyle{ \rho ! }[/math].
That means [math]\displaystyle{ \frac{P_1}{\rho !} }[/math] is also an integer, and dividing it by [math]\displaystyle{ \rho + 1 }[/math] would give one the remainder [math]\displaystyle{ b^{\left(M\rho+M\right)}\cdot b_M^{\left(\rho+1\right)} }[/math]. (This is just important to make sure that [math]\displaystyle{ P_1 }[/math] is not always equal to zero.)
Second Sum
For the terms in the second sum we just calculate upper bounds. Let [math]\displaystyle{ K }[/math] be the maximum (absolute) value of [math]\displaystyle{ z\cdot g(z) }[/math] on all the line segments [math]\displaystyle{ \left[0;\beta_i\right] }[/math] and [math]\displaystyle{ k }[/math] the maximum (absolute) value of [math]\displaystyle{ g(z)\cdot e^{-z} }[/math] also on these line segments. Then:
- [math]\displaystyle{ \left|\int_0^{\beta_i}\right|\leq \left|\beta_i\right|\cdot k \cdot K^{\rho} }[/math]
So, if we abbreviate [math]\displaystyle{ \kappa =\left(\left|\beta_1\cdot e^{\beta_1}\right| +\left|\beta_2\cdot e^{\beta_2}\right| +\text{ . . . } +\left|\beta_M\cdot e^{\beta_M}\right| \right)\cdot k }[/math] we simply get
- [math]\displaystyle{ \left|P_2\right|\leq\kappa\cdot K^{\rho} }[/math].
Note that neither [math]\displaystyle{ \kappa }[/math] nor [math]\displaystyle{ K }[/math] depend on [math]\displaystyle{ \rho }[/math].
Conclusion
Now we come back to our original equation [math]\displaystyle{ P_1+P_2=0 }[/math]. By dividing with [math]\displaystyle{ \rho ! }[/math] on both sides we get
- [math]\displaystyle{ \frac{P_1}{\rho !}+\frac{P_2}{\rho !}=0 }[/math]
Remember that [math]\displaystyle{ \rho }[/math] was an arbitrary positive integer. According to the inequality we proved for [math]\displaystyle{ P_2 }[/math] we can get [math]\displaystyle{ \frac{P_2}{\rho !} }[/math] as close to zero as we want if we choose [math]\displaystyle{ \rho }[/math] large enough. But we also proved that [math]\displaystyle{ \frac{P_1}{\rho !} }[/math] is always an integer, and there are infinitely many choices [10] for [math]\displaystyle{ \rho }[/math] such that [math]\displaystyle{ \frac{P_1}{\rho !} }[/math] is not divisible by [math]\displaystyle{ \rho + 1 }[/math] so it can't be zero. One can easily see that this equation can't hold. Therefore our initial premise was faulty and [math]\displaystyle{ \pi }[/math] is transcendent.
Statement of the claim | Pi is transcendental |
Level of certainty | Proven |
Nature | Theoretical |
Counterclaim | Pi is algebraic |
Dependent on |
|
Dependency of |
|
References
- ↑ [math]\displaystyle{ i^2=-1 }[/math]
- ↑ Euler's identity
- ↑ This is a modified Version of an alternative formula for the factorial: [math]\displaystyle{ n!=\int_0^{\infty}z^{n}e^{-z}dz }[/math]. We can use this formula as a "bridge" between the exponential function and the integers.
- ↑ Where [math]\displaystyle{ \int_0^{\beta_i} }[/math] is a line integral along the line segment from [math]\displaystyle{ 0 }[/math] to [math]\displaystyle{ \beta_i }[/math] in the complex plane, and [math]\displaystyle{ \int_{\beta_i}^{\infty} }[/math] is also a line integral obtained by integrating over the line from [math]\displaystyle{ \beta_i }[/math] to [math]\displaystyle{ \infty }[/math] parallel to the real axis in the complex plane. If [math]\displaystyle{ \beta_i }[/math] is a real number this just boils down to splitting the interval of integration. But if [math]\displaystyle{ \beta_i }[/math] is a non-real complex number Cauchy's integral theorem has to be utilised to show that integrating along these different paths gives the same result.
- ↑ [math]\displaystyle{ \int_0^{\infty}z^{\rho}\left[f(z)b^M\right]^{\rho + 1}e^{-z}dz =b^{M\left(\rho+1\right)}\int_0^{\infty}\left(cz^{M\rho+M}+\text{ . . . }+c_{M\rho+M}\right)z^{\rho}e^{-z}dz = b^{M\left(\rho+1\right)}\left(c\left(M\rho+M+\rho\right)!+\text{ . . . }+c_{M\rho+M}\rho!\right) =b^{M\rho+M}\rho!\left(c\frac{\left(M\rho+M+\rho\right)!}{\rho!}+\text{ . . . }+c_{M\rho+M}\right) }[/math] where the [math]\displaystyle{ c_i }[/math] are integers; if [math]\displaystyle{ f }[/math] is a polynomial with integer coefficients so is [math]\displaystyle{ f^{\rho+1} }[/math]. Note that the fractions [math]\displaystyle{ \frac{\left(\rho+k\right)!}{\rho!} }[/math] are also integers.
- ↑ Note that in the parentheses above every term is divisible by [math]\displaystyle{ (\rho+1) }[/math] except the last one [math]\displaystyle{ c_{M\rho+M} }[/math]. Hence, modulo [math]\displaystyle{ (\rho+1) }[/math] we have the congruence [math]\displaystyle{ \int_0^{\infty}\equiv b^{M\rho+M}\rho! c_{M\rho+M}\equiv b^{M\rho+M}\rho! b_M^{\rho+1} }[/math]
- ↑ [math]\displaystyle{ e^{\beta_i}\int_{\beta_i}^{\infty}z^{\rho}\left[f(z)b^M\right]^{\rho + 1}e^{-z}dz = e^{\beta_i}\int_0^{\infty}\left(\omega+\beta_i\right)^{\rho}\left[f\left(\omega+\beta_i\right)b^M\right]^{\rho + 1}e^{-\omega-\beta_i}d\omega = \int_0^{\infty}\left(\omega+\beta_i\right)^{\rho}\left[f\left(\omega+\beta_i\right)b^M\right]^{\rho + 1}e^{-\omega}d\omega }[/math]
- ↑
We can expand the first factor using the binomial theorem
[math]\displaystyle{
\int_0^{\infty}\left(\omega+\beta_i\right)^{\rho}\left[f\left(\omega+\beta_i\right)b^M\right]^{\rho + 1}e^{-\omega}d\omega
= b^{M\rho+M}\int_0^{\infty}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\omega^k\beta_i^{\rho-k}\left[f\left(\omega+\beta_i\right)\right]^{\rho + 1}e^{-\omega}d\omega
= b^{M\rho+M}\sum_{k=0}^{\rho}\left(\begin{array}{c} \rho \\ k\end{array}\right)\beta_i^{\rho-k}\int_0^{\infty}\omega^k\left[f\left(\omega+\beta_i\right)\right]^{\rho + 1}e^{-\omega}d\omega
}[/math]
- The expression [math]\displaystyle{ f(\omega+\beta_i) }[/math] will again be some kind of [math]\displaystyle{ M }[/math]-th degree polynomial. But because the polynomial is zero for [math]\displaystyle{ \omega = 0 }[/math] we know that the last coefficient is also equal to zero.
- So, raised to the [math]\displaystyle{ \rho+1 }[/math]-th power we get a polynomial again, but with the last [math]\displaystyle{ \rho }[/math] coefficients equal to zero.
- We can "distribute" the integral into the sum
- As above we can now use the fact that [math]\displaystyle{ \int_0^{\infty}\omega^{\rho}e^{-\omega}d\omega = \rho! }[/math] to get rid of the integrals; the expression becomes
- where [math]\displaystyle{ G(\beta_i) }[/math] is a polynomial in [math]\displaystyle{ \beta_i }[/math] with integer coefficients.
- ↑ See Newton-Girard Formulas
- ↑ multiples of [math]\displaystyle{ a\cdot b\cdot b_M }[/math]