The square root of 2 is irrational

From arguably.io
Revision as of 00:58, 20 January 2022 by Bill (talk | contribs) (Added proof by contradiction)
Jump to navigation Jump to search

The square root of 2 is irrational is the claim in number theory that there is no rational number that when multiplied by itself equals the number 2.

One proof by Reductio ad absurdum consists of first assuming that the square root of 2 can be written as a rational number. Thus, there is a pair of coprime integers p and q such that their ratio p/q is equal to the square root of 2 (Every rational number has an irreducible representation). And so, p²/q² = 2, and p²=2q². As has a factor of 2, it is even, and thus p is also even. Thus p can be written as 2k, where k is an integer. It then follows that (2k)²=2q², 4k²=2q², 2k²=q², and thus also has a factor of 2, and thus q is also even. If p and q are both even, then they share a common factor of 2, and thus are not coprime, leading to a contradiction as we have already established that p and q are coprime.

Claim
Statement of the claim The square root of 2 is irrational
Level of certainty Proven
Nature Theoretical
Counterclaim
Dependent on


Dependency of

Every rational number has an irreducible representation